Automorphism group of Green ring of Sweedler Hopf algebra

Tingting JIA, Ruju ZHAO, Libin LI

PDF(143 KB)
PDF(143 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 921-932. DOI: 10.1007/s11464-016-0565-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Automorphism group of Green ring of Sweedler Hopf algebra

Author information +
History +

Abstract

Let H2 be Sweedler’s 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) ⊗FZ, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G= F \ {1/2} with multiplication given by a · b= 1− ab+ 2ab.

Keywords

Automorphism group / Green ring / Green algebra / Sweedler Hopf algebra

Cite this article

Download citation ▾
Tingting JIA, Ruju ZHAO, Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China, 2016, 11(4): 921‒932 https://doi.org/10.1007/s11464-016-0565-4

References

[1]
Alperin R C. Homology of the group of automorphisms of k[x, y]. J Pure Appl Algebra, 1979, 15: 109–115
CrossRef Google scholar
[2]
Chen H X, Huang H L, Ye Y, Zhang P. Monomial Hopf algebra. J Algebra, 2004, 275:212–232
CrossRef Google scholar
[3]
Chen H X, Oystaeyen F V, Zhang Y H. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
CrossRef Google scholar
[4]
Chen H X, Wang W J. The coalgebra automorphisms of a Hopf algebras. http://www.paper.edu.cn (in Chinese)
[5]
Dicks W. Automorphisms of the polynomial ring in two variables. Publ Sec Mat Univ Autonoma Barcelona, 1983, 27: 155–162
CrossRef Google scholar
[6]
Han J Z, Su Y C. Automorphism groups of Witt algebras. arXiv: 1502.01441v1
[7]
Huang H L, Chen H X, Zhang P. Generalized Taft Hopf algebras. Algebra Colloq, 2004, 11(3): 313–320
[8]
Li L B, Zhang Y H. The Green rings of the generalized Taft Hopf algebras. Contemp Math, 2013, 585: 275–288
CrossRef Google scholar
[9]
Radford D E. On the coradical of a finite-dimensional Hopf algebra. Proc Amer Math Soc, 1975, 53: 9–15
CrossRef Google scholar
[10]
Taft E J. The order of the antipode of a finite-dimensional Hopf algebra. Proc Natl Acad Sci USA, 1971, 68: 2631–2633
CrossRef Google scholar
[11]
van der Kulk W. On polynomial rings in two variables. Nieuw Arch Wiskd (3), 1953, I: 33–41
[12]
Vesselin D, Yu J T. Automophisms of polynomial algebras and Dirichlet series. J Algebra, 2009, 321: 292–302
CrossRef Google scholar
[13]
Yu J T. Recognizing automophisms of polynomial algebras. Contemp Math, 1998, 14:215–225
[14]
Zhao K M. Automorphisms of the binary polynomial algebras on integer rings. Chinese Ann Math Ser A, 1995, (4): 448–494 (in Chinese)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(143 KB)

Accesses

Citations

Detail

Sections
Recommended

/