![](/develop/static/imgs/pdf.png)
Automorphism group of Green ring of Sweedler Hopf algebra
Tingting JIA, Ruju ZHAO, Libin LI
Automorphism group of Green ring of Sweedler Hopf algebra
Let H2 be Sweedler’s 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) ⊗, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of 2 and G, where G= F \ {1/2} with multiplication given by a · b= 1− a − b+ 2ab.
Automorphism group / Green ring / Green algebra / Sweedler Hopf algebra
[1] |
Alperin R C. Homology of the group of automorphisms of k[x, y]. J Pure Appl Algebra, 1979, 15: 109–115
CrossRef
Google scholar
|
[2] |
Chen H X, Huang H L, Ye Y, Zhang P. Monomial Hopf algebra. J Algebra, 2004, 275:212–232
CrossRef
Google scholar
|
[3] |
Chen H X, Oystaeyen F V, Zhang Y H. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
CrossRef
Google scholar
|
[4] |
Chen H X, Wang W J. The coalgebra automorphisms of a Hopf algebras. http://www.paper.edu.cn (in Chinese)
|
[5] |
Dicks W. Automorphisms of the polynomial ring in two variables. Publ Sec Mat Univ Autonoma Barcelona, 1983, 27: 155–162
CrossRef
Google scholar
|
[6] |
Han J Z, Su Y C. Automorphism groups of Witt algebras. arXiv: 1502.01441v1
|
[7] |
Huang H L, Chen H X, Zhang P. Generalized Taft Hopf algebras. Algebra Colloq, 2004, 11(3): 313–320
|
[8] |
Li L B, Zhang Y H. The Green rings of the generalized Taft Hopf algebras. Contemp Math, 2013, 585: 275–288
CrossRef
Google scholar
|
[9] |
Radford D E. On the coradical of a finite-dimensional Hopf algebra. Proc Amer Math Soc, 1975, 53: 9–15
CrossRef
Google scholar
|
[10] |
Taft E J. The order of the antipode of a finite-dimensional Hopf algebra. Proc Natl Acad Sci USA, 1971, 68: 2631–2633
CrossRef
Google scholar
|
[11] |
van der Kulk W. On polynomial rings in two variables. Nieuw Arch Wiskd (3), 1953, I: 33–41
|
[12] |
Vesselin D, Yu J T. Automophisms of polynomial algebras and Dirichlet series. J Algebra, 2009, 321: 292–302
CrossRef
Google scholar
|
[13] |
Yu J T. Recognizing automophisms of polynomial algebras. Contemp Math, 1998, 14:215–225
|
[14] |
Zhao K M. Automorphisms of the binary polynomial algebras on integer rings. Chinese Ann Math Ser A, 1995, (4): 448–494 (in Chinese)
|
/
〈 |
|
〉 |