Complete cohomology for complexes with finite Gorenstein AC-projective dimension

Jiangsheng HU, Yuxian GENG, Qinghua JIANG

PDF(219 KB)
PDF(219 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 901-920. DOI: 10.1007/s11464-016-0564-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Complete cohomology for complexes with finite Gorenstein AC-projective dimension

Author information +
History +

Abstract

We study complete cohomology of complexes with finite Gorenstein AC-projective dimension. We show first that the class of complexes admitting a complete level resolution is exactly the class of complexes with finite Gorenstein AC-projective dimension. This lets us give some general techniques for computing complete cohomology of complexes with finite Gorenstein ACprojective dimension. As a consequence, the classical relative cohomology for modules of finite Gorenstein AC-projective dimension is extended. Finally, the relationships between projective dimension and Gorenstein AC-projective dimension for complexes are given.

Keywords

Gorenstein AC-projective / complete level resolution / complete cohomology

Cite this article

Download citation ▾
Jiangsheng HU, Yuxian GENG, Qinghua JIANG. Complete cohomology for complexes with finite Gorenstein AC-projective dimension. Front. Math. China, 2016, 11(4): 901‒920 https://doi.org/10.1007/s11464-016-0564-5

References

[1]
Asadollahi J, Salarian Sh. Cohomology theories for complexes. J Pure Appl Algebra, 2007, 210: 771–787
CrossRef Google scholar
[2]
Avramov L L, Foxby H-B. Homological dimensions of unbounded complexes. J Pure Appl Algebra, 1991, 71: 129–155
CrossRef Google scholar
[3]
Avramov L L, Foxby H-B, Halperin S. Differential Graded Homological Algebra. Preprint, 2009
[4]
Avramov L L, Martsinkovsky A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc Lond Math Soc, 2002, 85: 393–440
CrossRef Google scholar
[5]
Benson D J, Carlson J F. Products in negative cohomology. J Pure Appl Algebra, 1992, 82: 107–130
CrossRef Google scholar
[6]
Bravo D, Hovey M, Gillespie J. The stable module category of a general ring. arXiv:1405.5768
[7]
Butler M C R, Horrocks G. Classes of extensions and resolutions. Philos Trans R Soc Lond Ser A, 1961/1962, 254: 155–222
CrossRef Google scholar
[8]
Cartan H, Eilenberg S. Homological Algebra. Princeton; Princeton Univ Press, 1956
[9]
Christensen L W. Gorenstein Dimensions. Lecture Notes in Math, Vol 1747. Berlin:Springer-Verlag, 2000
CrossRef Google scholar
[10]
Christensen L W, Foxby H-B, Holm H. Derived Category Methods in Commutative Algebra. Preprint, 2012
[11]
Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J Algebra, 2006, 302: 231–279
CrossRef Google scholar
[12]
Eilenberg S, Moore J C. Foundations of Relative Homological Algebra. Mem Amer Math Soc, No 55. Providence: Amer Math Soc, 1965
[13]
Eklof P, Trlifaj J. How to make Ext vanish. Bull Lond Math Soc, 2001, 33: 41–51
CrossRef Google scholar
[14]
Enochs E E, Jenda O M G. Gorenstein injective and projective modules. Math Z, 1995, 220: 611–633
CrossRef Google scholar
[15]
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000
CrossRef Google scholar
[16]
Gillespie J. The flat model structure on Ch(R). Trans Amer Math Soc, 2004, 356:3369–3390
CrossRef Google scholar
[17]
Gillespie J. Model structures on modules over Ding-Chen rings. Homology, Homotopy Appl, 2010, 12: 61–73
CrossRef Google scholar
[18]
Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82:39–64
CrossRef Google scholar
[19]
Holm H. Gorenstein derived functors. Proc Amer Math Soc, 2004, 132: 1913–1923
CrossRef Google scholar
[20]
Hovey M. Cotorsion pairs and model categories. Contemp Math, 2007, 436: 277–296
CrossRef Google scholar
[21]
Hu J S, Ding N Q. A model structure approach to the Tate-Vogel cohomology. J Pure Appl Algebra, 2016, 220(6): 2240–2264
CrossRef Google scholar
[22]
Mislin G. Tate cohomology for arbitrary groups via satellites. Topology Appl, 1994, 56: 293–300
CrossRef Google scholar
[23]
Salce L. Cotorsion theories for abelian groups. Symposia Math, 1979, 23: 11–32
[24]
Sather-Wagstaff S, Sharif T, White D. Gorenstein cohomology in abelian categories. J Math Kyoto Univ, 2008, 48: 571–596
[25]
Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14:403–428
CrossRef Google scholar
[26]
Veliche O. Gorenstein projective dimension for complexes. Trans Amer Math Soc, 2006, 358: 1257–1283
CrossRef Google scholar
[27]
Yang G, Liu Z K. Cotorsion pairs and model structures on Ch(R). Proc Edinb Math Soc, 2011, 54: 783–797
CrossRef Google scholar
[28]
Yang X Y, Ding N Q. On a question of Gillespie. Forum Math, 2015, 27(6): 3205–3231
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(219 KB)

Accesses

Citations

Detail

Sections
Recommended

/