Complete cohomology for complexes with finite Gorenstein AC-projective dimension

Jiangsheng HU , Yuxian GENG , Qinghua JIANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 901 -920.

PDF (219KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 901 -920. DOI: 10.1007/s11464-016-0564-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Complete cohomology for complexes with finite Gorenstein AC-projective dimension

Author information +
History +
PDF (219KB)

Abstract

We study complete cohomology of complexes with finite Gorenstein AC-projective dimension. We show first that the class of complexes admitting a complete level resolution is exactly the class of complexes with finite Gorenstein AC-projective dimension. This lets us give some general techniques for computing complete cohomology of complexes with finite Gorenstein ACprojective dimension. As a consequence, the classical relative cohomology for modules of finite Gorenstein AC-projective dimension is extended. Finally, the relationships between projective dimension and Gorenstein AC-projective dimension for complexes are given.

Keywords

Gorenstein AC-projective / complete level resolution / complete cohomology

Cite this article

Download citation ▾
Jiangsheng HU, Yuxian GENG, Qinghua JIANG. Complete cohomology for complexes with finite Gorenstein AC-projective dimension. Front. Math. China, 2016, 11(4): 901-920 DOI:10.1007/s11464-016-0564-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asadollahi J, Salarian Sh. Cohomology theories for complexes. J Pure Appl Algebra, 2007, 210: 771–787

[2]

Avramov L L, Foxby H-B. Homological dimensions of unbounded complexes. J Pure Appl Algebra, 1991, 71: 129–155

[3]

Avramov L L, Foxby H-B, Halperin S. Differential Graded Homological Algebra. Preprint, 2009

[4]

Avramov L L, Martsinkovsky A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc Lond Math Soc, 2002, 85: 393–440

[5]

Benson D J, Carlson J F. Products in negative cohomology. J Pure Appl Algebra, 1992, 82: 107–130

[6]

Bravo D, Hovey M, Gillespie J. The stable module category of a general ring. arXiv:1405.5768

[7]

Butler M C R, Horrocks G. Classes of extensions and resolutions. Philos Trans R Soc Lond Ser A, 1961/1962, 254: 155–222

[8]

Cartan H, Eilenberg S. Homological Algebra. Princeton; Princeton Univ Press, 1956

[9]

Christensen L W. Gorenstein Dimensions. Lecture Notes in Math, Vol 1747. Berlin:Springer-Verlag, 2000

[10]

Christensen L W, Foxby H-B, Holm H. Derived Category Methods in Commutative Algebra. Preprint, 2012

[11]

Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J Algebra, 2006, 302: 231–279

[12]

Eilenberg S, Moore J C. Foundations of Relative Homological Algebra. Mem Amer Math Soc, No 55. Providence: Amer Math Soc, 1965

[13]

Eklof P, Trlifaj J. How to make Ext vanish. Bull Lond Math Soc, 2001, 33: 41–51

[14]

Enochs E E, Jenda O M G. Gorenstein injective and projective modules. Math Z, 1995, 220: 611–633

[15]

Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000

[16]

Gillespie J. The flat model structure on Ch(R). Trans Amer Math Soc, 2004, 356:3369–3390

[17]

Gillespie J. Model structures on modules over Ding-Chen rings. Homology, Homotopy Appl, 2010, 12: 61–73

[18]

Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82:39–64

[19]

Holm H. Gorenstein derived functors. Proc Amer Math Soc, 2004, 132: 1913–1923

[20]

Hovey M. Cotorsion pairs and model categories. Contemp Math, 2007, 436: 277–296

[21]

Hu J S, Ding N Q. A model structure approach to the Tate-Vogel cohomology. J Pure Appl Algebra, 2016, 220(6): 2240–2264

[22]

Mislin G. Tate cohomology for arbitrary groups via satellites. Topology Appl, 1994, 56: 293–300

[23]

Salce L. Cotorsion theories for abelian groups. Symposia Math, 1979, 23: 11–32

[24]

Sather-Wagstaff S, Sharif T, White D. Gorenstein cohomology in abelian categories. J Math Kyoto Univ, 2008, 48: 571–596

[25]

Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14:403–428

[26]

Veliche O. Gorenstein projective dimension for complexes. Trans Amer Math Soc, 2006, 358: 1257–1283

[27]

Yang G, Liu Z K. Cotorsion pairs and model structures on Ch(R). Proc Edinb Math Soc, 2011, 54: 783–797

[28]

Yang X Y, Ding N Q. On a question of Gillespie. Forum Math, 2015, 27(6): 3205–3231

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (219KB)

714

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/