π-Armendariz rings relative to a monoid
Yao WANG , Meimei JIANG , Yanli REN
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 1017 -1036.
π-Armendariz rings relative to a monoid
Let Mbe a monoid. A ring Ris called M-π-Armendariz if whenever α = a1g1+ a2g2+ · · · + angn, β = b1h1+ b2h2+ · · · + bmhm ∈ R[M] satisfy αβ ∈ nil(R[M]), then aibj ∈ nil(R) for all i, j. A ring R is called weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical. In this paper, we consider some extensions of M-π-Armendariz rings and further investigate their properties under the condition that R is weakly 2-primal. We prove that if R is an M-π-Armendariz ring then nil(R[M]) = nil(R)[M]. Moreover, we study the relationship between the weak zip-property (resp., weak APP-property, nilpotent p.p.-property, weak associated prime property) of a ring R and that of the monoid ring R[M] in case R is M-π-Armendariz.
Monoid ring / π-Armendariz ring / M-π-Armendariz ring / weakly 2-primal ring / weak annihilator
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |