Valuation ideals and primary w-ideals

Gyu Whan CHANG , Hwankoo KIM

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 829 -844.

PDF (189KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 829 -844. DOI: 10.1007/s11464-016-0554-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Valuation ideals and primary w-ideals

Author information +
History +
PDF (189KB)

Abstract

Let D be an integral domain, V(D) (resp., t-V(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over D, c(f) be the ideal of D generated by the coefficients of f D[X], and Nv= {f D[X] | c(f)v=D}. In this paper, we study integral domains D in which w-P(D) ⊆ t-V(D), t-V(D) ⊆ w-P(D), or t-V(D) = w-P(D). We also study the relationship between t-V(D) and V(D[X]Nv), and characterize when t-V(A + XB[X]) ⊆w-P(A + XB[X]) holds for a proper extension A B of integral domains.

Keywords

t-Valuation ideal / primary w-ideal / PvMD / UMT-domain / D[X]Nv

Cite this article

Download citation ▾
Gyu Whan CHANG, Hwankoo KIM. Valuation ideals and primary w-ideals. Front. Math. China, 2016, 11(4): 829-844 DOI:10.1007/s11464-016-0554-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson D D, Anderson D F, Zafrullah M. The ring D+XDS[X] and t-splitting sets. Arab J Sci Eng Sect C Theme Issues, 2001, 26: 3–16

[2]

Anderson D F, Chang G W, Park J. Weakly Krull and related domains of the form D+ M, A+ XB[X] and A+ X2B[X].Rocky Mountain J Math, 2006, 36: 1–22

[3]

Anderson D F, El Abidine D N. The A+ XB[X] and A+XB[[X]] constructions from GCD-domains. J Pure Appl Algebra, 2001, 159: 15–24

[4]

Chang G W. Strong Mori domains and the ring D[X]Nv.J Pure Appl Algebra, 2005, 197: 293–304

[5]

Chang G W. Prüfer v-multiplication domains, Nagata rings, and Kronecker function rings. J Algebra, 2008, 319: 309–319

[6]

Chang G W. Prüfer v-multiplication domains and valuation ideals. Houston J Math, 2013, 39: 363–371

[7]

Chang G W, Fontana M. Upper to zero in polynomial rings and Prüfer-like domains. Comm Algebra, 2009, 37: 164–192

[8]

Chang G W, Zafrullah M. The w-integral closure of integral domains. J Algebra, 2006, 295: 195–210

[9]

Emerson S S. Overrings of an Integral Domain. Doctoral Thesis, University of North Texas, 1992

[10]

Gilmer R. A class of domains in which primary ideals are valuation ideals. Math Ann, 1965, 161: 247–254

[11]

Gilmer R. Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics 90. Queen’s University, Kingston, Ontario, 1992

[12]

Gilmer R, Ohm J. Primary ideals and valuation ideals. Trans Amer Math Soc, 1965, 117: 237–250

[13]

Griffin M. Rings of Krull type. J Reine Angew Math, 1968, 229: 1–27

[14]

Houston E, M. Zafrullah M. On t-invertibility II. Comm Algebra, 1989, 17: 1955–1969

[15]

Kang B G. Prüfer v-multiplication domains and the ring R[X]Nv.J Algebra, 1989, 123: 151–170

[16]

Zariski O, Samuel P. Commutative Algebra, Vol 2. New York: van Nostrand, 1961

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (189KB)

886

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/