Valuation ideals and primary w-ideals
Gyu Whan CHANG, Hwankoo KIM
Valuation ideals and primary w-ideals
Let D be an integral domain, (D) (resp., t-(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over D, c(f) be the ideal of D generated by the coefficients of f ∈ D[X], and Nv= {f ∈ D[X] | c(f)v=D}. In this paper, we study integral domains D in which w-(D) ⊆ t-(D), t-(D) ⊆ w-(D), or t-(D) = w-(D). We also study the relationship between t-(D) and (), and characterize when t-(A + XB[X]) ⊆w-(A + XB[X]) holds for a proper extension A ⊂ B of integral domains.
t-Valuation ideal / primary w-ideal / PvMD / UMT-domain / D[X]Nv
[1] |
Anderson D D, Anderson D F, Zafrullah M. The ring D+XDS[X] and t-splitting sets. Arab J Sci Eng Sect C Theme Issues, 2001, 26: 3–16
|
[2] |
Anderson D F, Chang G W, Park J. Weakly Krull and related domains of the form D+ M, A+ XB[X] and A+ X2B[X].Rocky Mountain J Math, 2006, 36: 1–22
CrossRef
Google scholar
|
[3] |
Anderson D F, El Abidine D N. The A+ XB[X] and A+XB[[X]] constructions from GCD-domains. J Pure Appl Algebra, 2001, 159: 15–24
CrossRef
Google scholar
|
[4] |
Chang G W. Strong Mori domains and the ring
CrossRef
Google scholar
|
[5] |
Chang G W. Prüfer v-multiplication domains, Nagata rings, and Kronecker function rings. J Algebra, 2008, 319: 309–319
CrossRef
Google scholar
|
[6] |
Chang G W. Prüfer v-multiplication domains and valuation ideals. Houston J Math, 2013, 39: 363–371
|
[7] |
Chang G W, Fontana M. Upper to zero in polynomial rings and Prüfer-like domains. Comm Algebra, 2009, 37: 164–192
CrossRef
Google scholar
|
[8] |
Chang G W, Zafrullah M. The w-integral closure of integral domains. J Algebra, 2006, 295: 195–210
CrossRef
Google scholar
|
[9] |
Emerson S S. Overrings of an Integral Domain. Doctoral Thesis, University of North Texas, 1992
|
[10] |
Gilmer R. A class of domains in which primary ideals are valuation ideals. Math Ann, 1965, 161: 247–254
CrossRef
Google scholar
|
[11] |
Gilmer R. Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics 90. Queen’s University, Kingston, Ontario, 1992
|
[12] |
Gilmer R, Ohm J. Primary ideals and valuation ideals. Trans Amer Math Soc, 1965, 117: 237–250
CrossRef
Google scholar
|
[13] |
Griffin M. Rings of Krull type. J Reine Angew Math, 1968, 229: 1–27
|
[14] |
Houston E, M. Zafrullah M. On t-invertibility II. Comm Algebra, 1989, 17: 1955–1969
CrossRef
Google scholar
|
[15] |
Kang B G. Prüfer v-multiplication domains and the ring
CrossRef
Google scholar
|
[16] |
Zariski O, Samuel P. Commutative Algebra, Vol 2. New York: van Nostrand, 1961
|
/
〈 | 〉 |