Valuation ideals and primary w-ideals

Gyu Whan CHANG, Hwankoo KIM

PDF(189 KB)
PDF(189 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 829-844. DOI: 10.1007/s11464-016-0554-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Valuation ideals and primary w-ideals

Author information +
History +

Abstract

Let D be an integral domain, V(D) (resp., t-V(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over D, c(f) be the ideal of D generated by the coefficients of f D[X], and Nv= {f D[X] | c(f)v=D}. In this paper, we study integral domains D in which w-P(D) ⊆ t-V(D), t-V(D) ⊆ w-P(D), or t-V(D) = w-P(D). We also study the relationship between t-V(D) and V(D[X]Nv), and characterize when t-V(A + XB[X]) ⊆w-P(A + XB[X]) holds for a proper extension A B of integral domains.

Keywords

t-Valuation ideal / primary w-ideal / PvMD / UMT-domain / D[X]Nv

Cite this article

Download citation ▾
Gyu Whan CHANG, Hwankoo KIM. Valuation ideals and primary w-ideals. Front. Math. China, 2016, 11(4): 829‒844 https://doi.org/10.1007/s11464-016-0554-7

References

[1]
Anderson D D, Anderson D F, Zafrullah M. The ring D+XDS[X] and t-splitting sets. Arab J Sci Eng Sect C Theme Issues, 2001, 26: 3–16
[2]
Anderson D F, Chang G W, Park J. Weakly Krull and related domains of the form D+ M, A+ XB[X] and A+ X2B[X].Rocky Mountain J Math, 2006, 36: 1–22
CrossRef Google scholar
[3]
Anderson D F, El Abidine D N. The A+ XB[X] and A+XB[[X]] constructions from GCD-domains. J Pure Appl Algebra, 2001, 159: 15–24
CrossRef Google scholar
[4]
Chang G W. Strong Mori domains and the ring D[X]Nv.J Pure Appl Algebra, 2005, 197: 293–304
CrossRef Google scholar
[5]
Chang G W. Prüfer v-multiplication domains, Nagata rings, and Kronecker function rings. J Algebra, 2008, 319: 309–319
CrossRef Google scholar
[6]
Chang G W. Prüfer v-multiplication domains and valuation ideals. Houston J Math, 2013, 39: 363–371
[7]
Chang G W, Fontana M. Upper to zero in polynomial rings and Prüfer-like domains. Comm Algebra, 2009, 37: 164–192
CrossRef Google scholar
[8]
Chang G W, Zafrullah M. The w-integral closure of integral domains. J Algebra, 2006, 295: 195–210
CrossRef Google scholar
[9]
Emerson S S. Overrings of an Integral Domain. Doctoral Thesis, University of North Texas, 1992
[10]
Gilmer R. A class of domains in which primary ideals are valuation ideals. Math Ann, 1965, 161: 247–254
CrossRef Google scholar
[11]
Gilmer R. Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics 90. Queen’s University, Kingston, Ontario, 1992
[12]
Gilmer R, Ohm J. Primary ideals and valuation ideals. Trans Amer Math Soc, 1965, 117: 237–250
CrossRef Google scholar
[13]
Griffin M. Rings of Krull type. J Reine Angew Math, 1968, 229: 1–27
[14]
Houston E, M. Zafrullah M. On t-invertibility II. Comm Algebra, 1989, 17: 1955–1969
CrossRef Google scholar
[15]
Kang B G. Prüfer v-multiplication domains and the ring R[X]Nv.J Algebra, 1989, 123: 151–170
CrossRef Google scholar
[16]
Zariski O, Samuel P. Commutative Algebra, Vol 2. New York: van Nostrand, 1961

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(189 KB)

Accesses

Citations

Detail

Sections
Recommended

/