On extensions of matrix rings with skew Hochschild 2-cocycles

Chan Yong HONG , Nam Kyun KIM , Tai Keun KWAK , Yang LEE

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 869 -900.

PDF (263KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 869 -900. DOI: 10.1007/s11464-016-0552-9
RESEARCH ARTICLE
RESEARCH ARTICLE

On extensions of matrix rings with skew Hochschild 2-cocycles

Author information +
History +
PDF (263KB)

Abstract

We study structures of Hochschild 2-cocycles related to endomorphisms and introduce a skew Hochschild 2-cocycle. We moreover define skew Hochschild extensions equipped with skew Hochschild 2-cocycles, and then we examine uniquely clean, Abelian, directly finite, symmetric, and reversible ring properties of skew Hochschild extensions and related ring systems. The results obtained here provide various kinds of examples of such rings. Especially, we give an answer negatively to the question of H. Lin and C. Xi for the corresponding Hochschild extensions of reversible (or semicommutative) rings. Finally, we establish three kinds of Hochschild extensions with Hochschild 2-cocycles and skew Hochschild 2-cocycles.

Keywords

Skew Hochschild extensions / matrix rings / skew triangular matrix rings / (uniquely) clean rings / symmetric rings

Cite this article

Download citation ▾
Chan Yong HONG, Nam Kyun KIM, Tai Keun KWAK, Yang LEE. On extensions of matrix rings with skew Hochschild 2-cocycles. Front. Math. China, 2016, 11(4): 869-900 DOI:10.1007/s11464-016-0552-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alhevaz A, Habibi M, Moussavi A. On rings having McCoy-like conditions. Comm Algebra, 2012, 40: 1195–1221

[2]

Hong C Y, Kim N K, Kwak T K. Ore extensions of Baer and p.p.-rings. J Pure Appl Algebra, 2000, 151: 215–226

[3]

Kim N K, Lee Y. Extensions of reversible rings. J Pure Appl Algebra, 2003, 185: 207–223

[4]

Ko¸ssan M T, Lee T-K, Zhou Y. An extension of rings and Hochschild 2-cocycles. In: Kim J Y, Huh C, Lee Y, Kwak T K, eds. Contemporary Ring Theory 2011, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory; 27 June-2 July 2011. Singapore: World Scientific, 2012, 29–46

[5]

Lee T-K, Zhou Y. Rings, Modules, Algebras, and Abelian Groups. Lecture Notes in Pure and Applied Mathematics, Vol 236. New York: Marcel Dekker, Inc, 2004

[6]

Lin H, Xi C. On Hochschild extensions of reduced and clean rings. Comm Algebra, 2008, 36: 388–394

[7]

Nasr-Isfahani A R. On skew triangular matrix ring. Comm Algebra, 2011, 39: 4461–4469

[8]

Nasr-Isfahani A R, Moussavi A. On a quotient of polynomial rings. Comm Algebra, 2010, 38: 567–575

[9]

Nicholson WK, Zhou Y. Rings in which elements are uniquely the sum of an idempotent and a unit. Glasgow Math J, 2004, 46: 227–236

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (263KB)

822

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/