On extensions of matrix rings with skew Hochschild 2-cocycles

Chan Yong HONG, Nam Kyun KIM, Tai Keun KWAK, Yang LEE

PDF(263 KB)
PDF(263 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 869-900. DOI: 10.1007/s11464-016-0552-9
RESEARCH ARTICLE
RESEARCH ARTICLE

On extensions of matrix rings with skew Hochschild 2-cocycles

Author information +
History +

Abstract

We study structures of Hochschild 2-cocycles related to endomorphisms and introduce a skew Hochschild 2-cocycle. We moreover define skew Hochschild extensions equipped with skew Hochschild 2-cocycles, and then we examine uniquely clean, Abelian, directly finite, symmetric, and reversible ring properties of skew Hochschild extensions and related ring systems. The results obtained here provide various kinds of examples of such rings. Especially, we give an answer negatively to the question of H. Lin and C. Xi for the corresponding Hochschild extensions of reversible (or semicommutative) rings. Finally, we establish three kinds of Hochschild extensions with Hochschild 2-cocycles and skew Hochschild 2-cocycles.

Keywords

Skew Hochschild extensions / matrix rings / skew triangular matrix rings / (uniquely) clean rings / symmetric rings

Cite this article

Download citation ▾
Chan Yong HONG, Nam Kyun KIM, Tai Keun KWAK, Yang LEE. On extensions of matrix rings with skew Hochschild 2-cocycles. Front. Math. China, 2016, 11(4): 869‒900 https://doi.org/10.1007/s11464-016-0552-9

References

[1]
Alhevaz A, Habibi M, Moussavi A. On rings having McCoy-like conditions. Comm Algebra, 2012, 40: 1195–1221
CrossRef Google scholar
[2]
Hong C Y, Kim N K, Kwak T K. Ore extensions of Baer and p.p.-rings. J Pure Appl Algebra, 2000, 151: 215–226
CrossRef Google scholar
[3]
Kim N K, Lee Y. Extensions of reversible rings. J Pure Appl Algebra, 2003, 185: 207–223
CrossRef Google scholar
[4]
Ko¸ssan M T, Lee T-K, Zhou Y. An extension of rings and Hochschild 2-cocycles. In: Kim J Y, Huh C, Lee Y, Kwak T K, eds. Contemporary Ring Theory 2011, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory; 27 June-2 July 2011. Singapore: World Scientific, 2012, 29–46
[5]
Lee T-K, Zhou Y. Rings, Modules, Algebras, and Abelian Groups. Lecture Notes in Pure and Applied Mathematics, Vol 236. New York: Marcel Dekker, Inc, 2004
[6]
Lin H, Xi C. On Hochschild extensions of reduced and clean rings. Comm Algebra, 2008, 36: 388–394
CrossRef Google scholar
[7]
Nasr-Isfahani A R. On skew triangular matrix ring. Comm Algebra, 2011, 39: 4461–4469
CrossRef Google scholar
[8]
Nasr-Isfahani A R, Moussavi A. On a quotient of polynomial rings. Comm Algebra, 2010, 38: 567–575
CrossRef Google scholar
[9]
Nicholson WK, Zhou Y. Rings in which elements are uniquely the sum of an idempotent and a unit. Glasgow Math J, 2004, 46: 227–236
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(263 KB)

Accesses

Citations

Detail

Sections
Recommended

/