Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions

Huan LIU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 655 -673.

PDF (214KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 655 -673. DOI: 10.1007/s11464-016-0534-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions

Author information +
History +
PDF (214KB)

Abstract

Let g be a holomorphic or Maass Hecke newform of level D and nebentypus χD, and let ag(n) be its n-th Fourier coefficient. We consider the sum S1=X<n2Xag(n)e(anβ) and prove that S1 has an asymptotic formula when β = 1/2 and αis close to ±2q/D for positive integer qX/4 and X sufficiently large. And when 0<β<1 and α, β fail to meet the above condition, we obtain upper bounds of S1. We also consider the sum S2=n>0ag(n)e(anβ)ϕ(n/X) with ϕ(x)Cc(0,+) and prove that S2 has better upper bounds than S1 at some special α and β.

Keywords

exponential sums / cusp form / Fourier coefficients

Cite this article

Download citation ▾
Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions. Front. Math. China, 2017, 12(3): 655-673 DOI:10.1007/s11464-016-0534-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DeligneP. La conjecture de Weil.I. Inst Hautes Études Sci Publ Math, 1974, 43(1): 273–307

[2]

GradshteynI S, RyzhikI M. Table of Integrals, Series, and Products. 7th ed.New York: Academic Press, 2007

[3]

HuxleyM N. Area, Lattice Points, and Exponential Sums.London Math Soc Monogr New Ser, Vol 13. New York: Clarendon Press, Oxford Univ Press, 1996

[4]

IwaniecH, KowalskiE. Analytic Number Theory.Colloq Publications, Vol 53. Providence: Amer Math Soc, 2004

[5]

IwaniecH, LuoW, SarnakP. Low lying zeros of families of L-functions.Inst Hautes Études Sci Publ Math, 2000, 91: 55–131

[6]

KimH, SarnakP. Refined estimates towards the Ramanujan and Selberg conjectures (Appendix to: Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2).J Amer Math Soc, 2003, 16: 139–183

[7]

KowalskiE, MichelP, VanderkamJ. Rankin-Selberg L-functions in the level aspect.Duke Math J, 2002, 114(1): 123–191

[8]

LiuKui, RenXiumin. On exponential sums involving fourier coefficients of cusp forms.J Number Theory, 2012, 132(1): 171–181

[9]

MillerS D, SchmidW. The highly oscillatory behavior of automorphic distributions for SL(2).Lett Math Phys, 2004, 69(1): 265–286

[10]

PittN J E. On cusp form coefficients in exponential sums.Quart J Math, 2001, 52: 485–497

[11]

RenXiumin, YeYangbo. Resonance between automorphic forms and exponential functions.Sci China Math, 2010, 53(9): 2463–2472

[12]

ShahidiF. Best estimates for Fourier coefficients of Maass forms.In: Automorphic Forms and Analytic Number Theory (Montreal, PQ, 1989). Montreal: Univ Montréal, 1990, 135–141

[13]

SunQingfeng, WuYuanying. Exponential sums involving Maass forms.Front Math China, 2014, 9(6): 1349–1366

[14]

WeiBin. Exponential sums twisted by Fourier coefficients of automorphic cusp forms for SL(2, ).Int J Number Theory, 2015, 11(1): 39–49

[15]

WiltonJ R. A note on Ramanujan’s arithmetical function τ(n).Math Proc Cambridge Philos Soc, 1929, 25: 121–129

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (214KB)

948

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/