Counting extreme U1 matrices and characterizing quadratic doubly stochastic operators

Quanbing ZHANG , Shangjun YANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 647 -659.

PDF (142KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 647 -659. DOI: 10.1007/s11464-016-0533-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Counting extreme U1 matrices and characterizing quadratic doubly stochastic operators

Author information +
History +
PDF (142KB)

Abstract

The U1 matrix and extreme U1 matrix were successfully used to study quadratic doubly stochastic operators by R. Ganikhodzhaev and F. Shahidi [Linear Algebra Appl., 2010, 432: 24–35], where a necessary condition for a U1 matrix to be extreme was given. S. Yang and C. Xu [Linear Algebra Appl., 2013, 438: 3905–3912] gave a necessary and sufficient condition for a symmetric nonnegative matrix to be an extreme U1 matrix and investigated the structure of extreme U1 matrices. In this paper, we count the number of the permutation equivalence classes of the n × n extreme U1 matrices and characterize the structure of the quadratic stochastic operators and the quadratic doubly stochastic operators.

Keywords

Extreme U1 matrix / quadratic doubly stochastic operator / majorized / permutation similar / irreducible matrix

Cite this article

Download citation ▾
Quanbing ZHANG, Shangjun YANG. Counting extreme U1 matrices and characterizing quadratic doubly stochastic operators. Front. Math. China, 2016, 11(3): 647-659 DOI:10.1007/s11464-016-0533-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berman A, Johnson C R. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1979

[2]

Birkhoff G. Three observations on linear algebra. Rev Univ Nac Tucuman Ser A, 1946, 5: 147–151

[3]

Ganikhodzhaev R, Shahidi F. Doubly stochastic quadratic operators and Birkhoff’s problem. Linear Algebra Appl, 2010, 432: 24–35

[4]

Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985

[5]

Otter R. The number of trees. Ann of Math, 1948, 49: 583–599

[6]

Shahidi F. On dissipative quadratic stochastic operators. Appl Math Inf Sci, 2008, 2: 211–223

[7]

Yang S, Xu C. On extreme U1matrices. Linear Algebra Appl, 2013, 438: 3905–3912

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (142KB)

805

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/