Generalized Vandermonde tensors

Changqing XU, Mingyue WANG, Xian LI

PDF(135 KB)
PDF(135 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 593-603. DOI: 10.1007/s11464-016-0528-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized Vandermonde tensors

Author information +
History +

Abstract

We extend Vandermonde matrices to generalized Vandermonde tensors. We call an mth order n-dimensional real tensor A=(Ai1i2...im) a type-1 generalized Vandermonde (GV) tensor, or GV1 tensor, if there exists a vector v=(v1,v2...vn)T such that Ai1i2...im=vi1i2+i3+...+im-m+1, and call A a type-2 (mth order ndimensional) GV tensor, or GV2 tensor, if there exists an (m-1)th order tensor B=(Bi1i2...im-1) such that Ai1i2...im=Bi1i2...im-1im-1.

In this paper, we mainly investigate the type-1 GV tensors including their products, their spectra, and their positivities. Applications of GV tensors are also introduced.

Keywords

Tensor / symmetric / Hankel / Vandermonde tensor / generalized Vandermonde tensor

Cite this article

Download citation ▾
Changqing XU, Mingyue WANG, Xian LI. Generalized Vandermonde tensors. Front. Math. China, 2016, 11(3): 593‒603 https://doi.org/10.1007/s11464-016-0528-9

References

[1]
Chen H, Chen Z, Qi L. Centrosymmetric, skew centrosymmetric and centrosymmetric Cauchy Tensors. 2014, arXiv: 1406.7409
[2]
Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11: 1263–1274
CrossRef Google scholar
[3]
Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254–1279
CrossRef Google scholar
[4]
Hu S, Huang Z, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2011, 50: 508–531
CrossRef Google scholar
[5]
Hu S, Qi L. The E-eigenvectors of tensors. Linear Multlinear Algebra, 2014, 62: 1388–1402
CrossRef Google scholar
[6]
Kaiman D. The generalized Vandermonde matrix. Math Mag, 1984, 57: 15–21
CrossRef Google scholar
[7]
Lim L-H. Singular values and eigenvalues of tensors: A variational approach. In: Proc of 1st IEEE Int’l Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2005, 129–132
[8]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
CrossRef Google scholar
[9]
Qi L. Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Commun Math Sci, 2015, 13: 113–125
CrossRef Google scholar
[10]
Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and an hierarchically elimination algorithm. 2014, 35: 1227–1241
[11]
Shao J, Shan H, Zhang L. On some properties of the determinants of tensors. Linear Algebra Appl, 2013, 439: 3057–3069
CrossRef Google scholar
[12]
Xu C. Hankel tensor, Vandermonde tensors, and their positivities. Linear Algebra Appl, 2016, 491: 56–72
CrossRef Google scholar
[13]
Ycart B. A case of mathematical eponym: the Vandermonde determinant. 2012, arXiv: 1204.4716v1

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/