Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture

Claus BAUER

Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 261 -280.

PDF (211KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 261 -280. DOI: 10.1007/s11464-016-0527-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture

Author information +
History +
PDF (211KB)

Abstract

We use the large sieve inequality with sparse sets of moduli to prove a new estimate for exponential sums over primes. Subsequently, we apply this estimate to establish new results on the binary Goldbach problem where the primes are restricted to given arithmetic progressions.

Keywords

Three primes theorem / exponential sums over primes / sparse set of modules

Cite this article

Download citation ▾
Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture. Front. Math. China, 2017, 12(2): 261-280 DOI:10.1007/s11464-016-0527-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baier S, Zhao L Y. Bombieri-Vinogradov type theorems for sparse sets of moduli. Acta Arith, 2006, 125(2): 287–301

[2]

Balog A, Perelli A. Exponential sums over primes in an arithmetic progression. Proc Amer Math Soc, 1985, 93: 578–582

[3]

Bauer C. The binary Goldbach conjecture with restrictions on the primes. Far East Asian J Math Sci, 2012, 70(1): 87–120

[4]

Bauer C, Wang Y H. On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J Math, 2006, 36(1): 35–66

[5]

Bauer C, Wang Y H. The binary Goldbach conjecture with primes in arithmetic progressions with large modulus. Acta Arith, 2013, 159.3: 227–243

[6]

Bombieri E. Le grand crible dans la théeorie analytique des nombres. Astéerique, 18, 1974

[7]

Gallagher P X. A large sieve density estimate near σ = 1. Invent Math, 1970, 11: 329–339

[8]

Ireland K, Rosen M. A Classical Introduction to Modern Number Theory. 2nd ed. Grad Texts in Math, Vol 84. Berlin: Springer, 1990

[9]

Liu J Y, Zhan T. The ternary Goldbach problem in arithmetic progressions. Acta Arith, 1997, 82: 197–227

[10]

Liu J Y, Zhan T. The exceptional set in Hua’s theorem for three squares of primes. Acta Math Sin (Engl Ser), 2005, 21(2): 335–350

[11]

Liu M C, Zhan T. The Goldbach problem with primes in arithmetic progressions. In: Motohashi Y, ed. Analytic Number Theory. London Math Soc Lecture Note Ser, Vol 247. Cambridge: Cambridge University Press, 1997, 227–251

[12]

Norton K K. Numbers with Small Prime Factors, and the Least kth Power Non-residue. Mem Amer Math Soc, No 106. Providence: Amer Math Soc, 1971

[13]

Ren X M. On exponential sum over primes and application in Waring-Goldbach problem. Sci China Ser A, 2005, 48(6): 785–797

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (211KB)

925

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/