Generalizations of von Neumann regular rings, PP rings, and Baer rings

Lixin MAO

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 377-400. DOI: 10.1007/s11464-016-0523-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalizations of von Neumann regular rings, PP rings, and Baer rings

Author information +
History +

Abstract

We introduce the notions of IDS modules, IP modules, and Baer* modules, which are new generalizations of von Neumann regular rings, PPrings, and Baer rings, respectively, in a general module theoretic setting. We obtain some characterizations and properties of IDS modules, IP modules and Baermodules. Some important classes of rings are characterized in terms of IDS modules, IP modules, and Baer*modules.

Keywords

IDS Module / IP module / Baermodule / von Neumann regular ring / PP ring / Baer ring

Cite this article

Download citation ▾
Lixin MAO. Generalizations of von Neumann regular rings, PP rings, and Baer rings. Front. Math. China, 2016, 11(2): 377‒400 https://doi.org/10.1007/s11464-016-0523-1

References

[1]
Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974
CrossRef Google scholar
[2]
Camillo V. Coherence for polynomial rings. J Algebra, 1990, 132: 72–76
CrossRef Google scholar
[3]
Ding N Q, Chen J L. Relative coherence and preenvelopes. Manuscripta Math, 1993, 81: 243–262
CrossRef Google scholar
[4]
Endo S. Note on p.p. rings. Nagoya Math J, 1960, 17: 167–170
[5]
Fieldhouse D J. Pure theories. Math Ann, 1969, 184: 1–18
CrossRef Google scholar
[6]
Goodearl K R. Ring Theory: Nonsingular Rings and Modules. Monographs and Textbooks in Pure and Applied Mathematics, Vol 33. New York and Basel: Marcel Dekker, Inc, 1976
[7]
Hattori A. A foundation of torsion theory for modules over general rings. Nagoya Math J, 1960, 17: 147–158
[8]
Jødrup J. p.p. rings and finitely generated flat ideals. Proc Amer Math Soc, 1971, 28: 431–435
[9]
Jones M F. f-Projectivity and flat epimorphisms. Comm Algebra, 1981, 9: 1603–1616
CrossRef Google scholar
[10]
Kaplansky I. Rings of Operators. New York: Benjamin, 1968
[11]
Lam T Y. Lectures on Modules and Rings. New York-Heidelberg-Berlin: Springer-Verlag, 1999
CrossRef Google scholar
[12]
Lee G, Rizvi S T, Roman C S. Rickart modules. Comm Algebra, 2010, 38: 4005–4027
CrossRef Google scholar
[13]
Lee G, Rizvi S T, Roman C S. Dual Rickart modules. Comm Algebra, 2011, 39: 4036–4058
CrossRef Google scholar
[14]
Lee T K, Zhou Y Q. Reduced modules, rings, modules, algebras and abelian groups. In: Facchini A, Houston E, Salce L. eds. Rings, Modules, Algebras, and Abelian Groups. Lecture Notes in Pure and Appl Math, Vol 236. New York: Dekker, 2004, 365–377
[15]
Liu Q, Ouyang B Y. Rickart modules. Nanjing Daxue Xuebao Shuxue Bannian Kan, 2006, 23(1): 157–166
[16]
Liu Q, Ouyang B Y, Wu T S. Principally quasi-Baer modules. J Math Res Exposition, 2009, 29(5): 823–830
[17]
Mao L X. Rings close to Baer. Indian J Pure Appl Math, 2007, 38(3): 129–142
[18]
Mao L X. Properties of P-coherent and Baer modules. Period Math Hungar, 2010, 60(2): 97–114
CrossRef Google scholar
[19]
Mao L X, Ding N Q. Relative flatness, Mittag-Leffler modules and endocoherence. Comm Algebra, 2006, 34(9): 3281–3299
CrossRef Google scholar
[20]
Nicholson W K. On PP-rings. Period Math Hungar, 1993, 27(2): 85–88
CrossRef Google scholar
[21]
Nicholson W K, Watters J F. Rings with projective socle. Proc Amer Math Soc, 1988, 102: 443–450
CrossRef Google scholar
[22]
Rizvi S T, Roman C S. Baer property of modules and applications. In: Chen J L, Ding N Q, Marubayashi, H. eds. Advances in Ring Theory. 2005, Singapore: World Scientific, 225–241
CrossRef Google scholar
[23]
Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979
[24]
Ware R. Endomorphism rings of projective modules. Trans Amer Math Soc, 1971, 155: 233–256
CrossRef Google scholar
[25]
Wisbauer R. Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991
[26]
Xue W M. On PP rings. Kobe J Math, 1990, 7: 77–80
[27]
Zelmanowitz J. Regular modules. Trans Amer Math Soc, 1972, 163: 340–355
CrossRef Google scholar
[28]
Zhu H Y, Ding N Q. Generalized morphic rings and their applications. Comm Algebra, 2007, 35: 2820–2837
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/