Generalizations of von Neumann regular rings, PP rings, and Baer rings
Lixin MAO
Generalizations of von Neumann regular rings, PP rings, and Baer rings
We introduce the notions of IDS modules, IP modules, and Baer* modules, which are new generalizations of von Neumann regular rings, PPrings, and Baer rings, respectively, in a general module theoretic setting. We obtain some characterizations and properties of IDS modules, IP modules and Baer∗ modules. Some important classes of rings are characterized in terms of IDS modules, IP modules, and Baer*modules.
IDS Module / IP module / Baer∗ module / von Neumann regular ring / PP ring / Baer ring
[1] |
Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974
CrossRef
Google scholar
|
[2] |
Camillo V. Coherence for polynomial rings. J Algebra, 1990, 132: 72–76
CrossRef
Google scholar
|
[3] |
Ding N Q, Chen J L. Relative coherence and preenvelopes. Manuscripta Math, 1993, 81: 243–262
CrossRef
Google scholar
|
[4] |
Endo S. Note on p.p. rings. Nagoya Math J, 1960, 17: 167–170
|
[5] |
Fieldhouse D J. Pure theories. Math Ann, 1969, 184: 1–18
CrossRef
Google scholar
|
[6] |
Goodearl K R. Ring Theory: Nonsingular Rings and Modules. Monographs and Textbooks in Pure and Applied Mathematics, Vol 33. New York and Basel: Marcel Dekker, Inc, 1976
|
[7] |
Hattori A. A foundation of torsion theory for modules over general rings. Nagoya Math J, 1960, 17: 147–158
|
[8] |
Jødrup J. p.p. rings and finitely generated flat ideals. Proc Amer Math Soc, 1971, 28: 431–435
|
[9] |
Jones M F. f-Projectivity and flat epimorphisms. Comm Algebra, 1981, 9: 1603–1616
CrossRef
Google scholar
|
[10] |
Kaplansky I. Rings of Operators. New York: Benjamin, 1968
|
[11] |
Lam T Y. Lectures on Modules and Rings. New York-Heidelberg-Berlin: Springer-Verlag, 1999
CrossRef
Google scholar
|
[12] |
Lee G, Rizvi S T, Roman C S. Rickart modules. Comm Algebra, 2010, 38: 4005–4027
CrossRef
Google scholar
|
[13] |
Lee G, Rizvi S T, Roman C S. Dual Rickart modules. Comm Algebra, 2011, 39: 4036–4058
CrossRef
Google scholar
|
[14] |
Lee T K, Zhou Y Q. Reduced modules, rings, modules, algebras and abelian groups. In: Facchini A, Houston E, Salce L. eds. Rings, Modules, Algebras, and Abelian Groups. Lecture Notes in Pure and Appl Math, Vol 236. New York: Dekker, 2004, 365–377
|
[15] |
Liu Q, Ouyang B Y. Rickart modules. Nanjing Daxue Xuebao Shuxue Bannian Kan, 2006, 23(1): 157–166
|
[16] |
Liu Q, Ouyang B Y, Wu T S. Principally quasi-Baer modules. J Math Res Exposition, 2009, 29(5): 823–830
|
[17] |
Mao L X. Rings close to Baer. Indian J Pure Appl Math, 2007, 38(3): 129–142
|
[18] |
Mao L X. Properties of P-coherent and Baer modules. Period Math Hungar, 2010, 60(2): 97–114
CrossRef
Google scholar
|
[19] |
Mao L X, Ding N Q. Relative flatness, Mittag-Leffler modules and endocoherence. Comm Algebra, 2006, 34(9): 3281–3299
CrossRef
Google scholar
|
[20] |
Nicholson W K. On PP-rings. Period Math Hungar, 1993, 27(2): 85–88
CrossRef
Google scholar
|
[21] |
Nicholson W K, Watters J F. Rings with projective socle. Proc Amer Math Soc, 1988, 102: 443–450
CrossRef
Google scholar
|
[22] |
Rizvi S T, Roman C S. Baer property of modules and applications. In: Chen J L, Ding N Q, Marubayashi, H. eds. Advances in Ring Theory. 2005, Singapore: World Scientific, 225–241
CrossRef
Google scholar
|
[23] |
Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979
|
[24] |
Ware R. Endomorphism rings of projective modules. Trans Amer Math Soc, 1971, 155: 233–256
CrossRef
Google scholar
|
[25] |
Wisbauer R. Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991
|
[26] |
Xue W M. On PP rings. Kobe J Math, 1990, 7: 77–80
|
[27] |
Zelmanowitz J. Regular modules. Trans Amer Math Soc, 1972, 163: 340–355
CrossRef
Google scholar
|
[28] |
Zhu H Y, Ding N Q. Generalized morphic rings and their applications. Comm Algebra, 2007, 35: 2820–2837
CrossRef
Google scholar
|
/
〈 | 〉 |