Group inverses for some 2 × 2 block matrices over rings

Chongguang CAO , Yingchun WANG , Yuqiu SHENG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 521 -538.

PDF (143KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (3) : 521 -538. DOI: 10.1007/s11464-016-0490-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Group inverses for some 2 × 2 block matrices over rings

Author information +
History +
PDF (143KB)

Abstract

We first consider the group inverses of the block matrices (A0BC) over a weakly finite ring. Then we study the sufficient and necessary conditions for the existence and the representations of the group inverses of the block matrices (ACBD) over a ring with unity 1 under the following conditions respectively: (i) B = C, D = 0, B# and (BπA) # both exist; (ii) B is invertible and m = n; (iii) A# and (D - CA#B)# both exist, C = CAA# , where A and D are m × m and n × n matrices, respectively.

Keywords

Group inverse / block matrix / right Ore domain / associative ring

Cite this article

Download citation ▾
Chongguang CAO, Yingchun WANG, Yuqiu SHENG. Group inverses for some 2 × 2 block matrices over rings. Front. Math. China, 2016, 11(3): 521-538 DOI:10.1007/s11464-016-0490-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. 2nd ed.New York: Springer-Verlag, 2003

[2]

Bhaskara Rao K P S. The Theory of Generalized Inverses over Commutative Rings. London and New York: Taylar and Francis, 2002

[3]

Bu C, Li M, Zhang K, Zheng L. Group inverses for the block matrices with an invertible subblock. Appl Math Comput, 2009, 215: 132–139

[4]

Bu C, Zhang K. Representations of the Drazin inverse on solution of a class singular differential equations. Linear Multilinear Algebra, 2011, 59: 863–877

[5]

Campbell S L. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 1983, 14: 195–198

[6]

Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. New York: Dover, 1991

[7]

Cao C. Some results of group inverses for partitioned matrices over skew fields. Sci Heilongjiang Univ, 2001, 18: 5–7 (in Chinese)

[8]

Cao C, Ge Y, Wang Y, Zhang H. Group inverse for two classes of 2 × 2 block matrices over rings. Comput Appl Math, 2014, 33: 469–479

[9]

Cao C, Li J. Group inverse for matrices over a Bézout domain. Electron J Linear Algebra, 2009, 18: 600–612

[10]

Cao C, Zhang H, Ge Y. Further results on the group inverse of some anti-triangular block matrices. J Appl Math Comput, 2014, 46: 169–179

[11]

Castro-González N, Robles J, Velez-Cerrada J Y. The group inverse of 2 ×2 matrices over a ring. Linear Algebra Appl, 2013, 438: 3600–3609

[12]

Cohn P M. Free Rings and Their Relations. 2nd ed. London Math Soc Monogr Ser, Vol 9. London: Academic Press Inc, 1985

[13]

Hartwig R E, Shoaf J. Group inverses and Drazin inverse of bidiagonal and triangular Teoplitz matrices. J Aust Math Soc Ser A, 1977, 24: 10–34

[14]

Huang L. Geometry of Matrices over Ring. Beijing: Science Press, 2006

[15]

Liu X, Yang H. Further results on the group inverses and Drazin inverses of antitriangular block matrices. Appl Math Comput, 2012, 218: 8978–8986

[16]

Meyer C D. The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev, 1975, 17(3): 443–464

[17]

Meyer C D, Rose N J. The index and the Drazin inverse of block triangular matrices. SIAM J Appl Math, 1977, 33: 1–7

[18]

Patŕıcio P, Puystjens R. About the von Neumann regularity of triangular block matrices. Linear Algebra Appl, 2001, 332-334: 485–502

[19]

Puystjens R, Hartwig R E. The group inverse of a companion matrix. Linear Multilinear Algebra, 1997, 43: 137–150

[20]

Sheng Y, Ge Y, Zhang H, Cao C. Group inverses for a class of 2 × 2 block matrices over rings. Appl Math Comput, 2013, 219: 9340–9346

[21]

Zhang K, Bu C. Group inverses of matrices over right Ore domains. Appl Math Comput, 2012, 218: 6942–6953

[22]

Zhao J, Bu C. Group inverses for the block matrices with two identical subblocks over skew fields. Electron J Linear Algebra, 2010, 21: 63–75

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (143KB)

816

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/