Hölder continuity of semigroups for time changed symmetric stable processes

Dejun LUO, Jian WANG

PDF(144 KB)
PDF(144 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 109-121. DOI: 10.1007/s11464-015-0501-z
research-article
research-article

Hölder continuity of semigroups for time changed symmetric stable processes

Author information +
History +

Abstract

Let(Zt)t0be a one-dimensional symmetric α-stable process withα(0,2), and letσbe a bounded (from above and from below) and 1/(α1)-Hölder continuous function on. Consider the stochastic differential equationdX=σ(Xt)dZt,which admits a unique strong solution. By using thesplitting technique and the coupling method, we derive the Hölder continuity of the associated semigroup.

Keywords

Symmetric stable process / time-change / Hölder continuity / coupling

Cite this article

Download citation ▾
Dejun LUO, Jian WANG. Hölder continuity of semigroups for time changed symmetric stable processes. Front. Math. China, 2016, 11(1): 109‒121 https://doi.org/10.1007/s11464-015-0501-z

References

[1]
Barczy M,Li Z H,Pap G.Yamada-Watanabe results for stochastic differential equations with jumps. Int J Stoch Anal, 2015, Art ID 460472, 23pp
[2]
Bass R F.Stochastic differential equations driven by symmetric stable process. In:Azéma J,Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI.Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 302–313
[3]
Chen Z Q,Wang J.Ergodicity for time-changed symmetric stable processes. Stochastic Process Appl, 2014, 124: 2799–2823
CrossRef Google scholar
[4]
Debussche A,Fournier N.Existence of densities for stable-like driven SDE’s with Höolder continuous coefficients. J Funct Anal, 2013, 264: 1757–1778
CrossRef Google scholar
[5]
Fournier N,Printems J.Absolute continuity for some one-dimensional processes. Bernoulli, 2010, 16: 343–369
CrossRef Google scholar
[6]
Komatsu T.On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc Japan Acad Ser A Math Sci, 1982, 58: 353–356
CrossRef Google scholar
[7]
Priola E,Wang F Y.Gradient estimates for diffusion semigroups with singular coefficients. J Funct Anal, 2006, 236: 244–264
CrossRef Google scholar
[8]
Stroock D.Diffusion processes associated with Lévy generators. Z Wahrsch Verw Gebiete, 1975, 32: 209–244
CrossRef Google scholar
[9]
Wang F Y,Xu L H,Zhang X C.Gradient estimates for SDEs driven by multiplicative Lévy noise. J Funct Anal, 2015, 269: 3195–3219
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(144 KB)

Accesses

Citations

Detail

Sections
Recommended

/