Hölder continuity of semigroups for time changed symmetric stable processes

Dejun LUO , Jian WANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 109 -121.

PDF (144KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 109 -121. DOI: 10.1007/s11464-015-0501-z
research-article
research-article

Hölder continuity of semigroups for time changed symmetric stable processes

Author information +
History +
PDF (144KB)

Abstract

Let(Zt)t0be a one-dimensional symmetric α-stable process withα(0,2), and letσbe a bounded (from above and from below) and 1/(α1)-Hölder continuous function on. Consider the stochastic differential equationdX=σ(Xt)dZt,which admits a unique strong solution. By using thesplitting technique and the coupling method, we derive the Hölder continuity of the associated semigroup.

Keywords

Symmetric stable process / time-change / Hölder continuity / coupling

Cite this article

Download citation ▾
Dejun LUO, Jian WANG. Hölder continuity of semigroups for time changed symmetric stable processes. Front. Math. China, 2016, 11(1): 109-121 DOI:10.1007/s11464-015-0501-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barczy M,Li Z H,Pap G.Yamada-Watanabe results for stochastic differential equations with jumps. Int J Stoch Anal, 2015, Art ID 460472, 23pp

[2]

Bass R F.Stochastic differential equations driven by symmetric stable process. In:Azéma J,Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI.Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 302–313

[3]

Chen Z Q,Wang J.Ergodicity for time-changed symmetric stable processes. Stochastic Process Appl, 2014, 124: 2799–2823

[4]

Debussche A,Fournier N.Existence of densities for stable-like driven SDE’s with Höolder continuous coefficients. J Funct Anal, 2013, 264: 1757–1778

[5]

Fournier N,Printems J.Absolute continuity for some one-dimensional processes. Bernoulli, 2010, 16: 343–369

[6]

Komatsu T.On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc Japan Acad Ser A Math Sci, 1982, 58: 353–356

[7]

Priola E,Wang F Y.Gradient estimates for diffusion semigroups with singular coefficients. J Funct Anal, 2006, 236: 244–264

[8]

Stroock D.Diffusion processes associated with Lévy generators. Z Wahrsch Verw Gebiete, 1975, 32: 209–244

[9]

Wang F Y,Xu L H,Zhang X C.Gradient estimates for SDEs driven by multiplicative Lévy noise. J Funct Anal, 2015, 269: 3195–3219

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (144KB)

742

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/