PDF
(123KB)
Abstract
We investigate the properties of nil-Coxeter algebras and nil-Ariki-Koike algebras. To be precise, from the view of standardly based algebras introduced by J. Du, H. Rui [Trans. Amer. Math. Soc, 1998, 350: 3207–3235], we give a description of simple modules of nil-Coxeter algebras and nil-Ariki-Koike algebras. Then we determine the representation type of nil-Coxeter algebras and nil-Ariki-Koike algebras. We also give a description of the center of nil-Ariki-Koike algebras.
Keywords
nil-Coxeter algebras
/
nil-Ariki-Koike algebras
Cite this article
Download citation ▾
Guiyu YANG.
Nil-Coxeter algebras and nil-Ariki-Koike algebras.
Front. Math. China, 2015, 10(6): 1473-1481 DOI:10.1007/s11464-015-0498-3
| [1] |
Ariki S. Hecke algebras of classical type and their representation type. Proc Lond Math Soc, 2005, 91: 355−413
|
| [2] |
Ariki S, Koike K. A Hecke algebra of (ℤ/rℤ) ≀Sn and construction of its irreducible representations. Adv Math, 1994, 106: 216−243
|
| [3] |
Bernstein J N, Gelfand I M, Gelfand S I. Schubert cells and cohomology of the spaces G/P. Russian Math Surveys, 1973, 28: 1−26
|
| [4] |
Brichard J. The center of the Nilcoxeter and 0-Hecke algebras. arXiv: 0811.2590
|
| [5] |
Crawley-Boevey W. Tameness of biserial algebras. Arch Math, 1995, 65: 399−407
|
| [6] |
Drozd J A. Tame and wild matrix problems. In: Dlab V, Gabriel P, eds. Representation Theory II. Lecture Notes in Math, Vol 832. Berlin-Heidelberg-New York: Springer, 1980, 242−258
|
| [7] |
Du J, Rui H. Based algebras and standard bases for quasi-hereditary algebras. Trans Amer Math Soc, 1998, 350: 3207−3235
|
| [8] |
Erdmann K. Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Math, Vol 1428. Berlin: Springer-Verlag, 1990
|
| [9] |
Fomin S, Stanley R P. Schubert polynomials and the nilCoxeter algebra. Adv Math, 1994, 103: 196−207
|
| [10] |
Graham J, Lehrer G. Cellular algebras. Invent Math, 1996, 123: 1−34
|
| [11] |
Grojnowski I, Vazirani M. Strong multiplicity one theorems for affine Hecke algebras of type A. Transform Groups, 2001, 6: 143−155
|
| [12] |
Khovanov M. Nilcoxeter algebras categorify the Weyl algebra. Comm Algebra, 2001, 29: 5033−5052
|
| [13] |
Khovanov M, Lauda A D. A diagrammatic approach to categorification of quantum groups I. Represent Theory, 2009, 13: 309−347
|
| [14] |
Lenzing H. Invariance of tameness under stable equivalence: Krause’s theorem. In: Krause H, Ringel C M, eds. Infinite Length Modules. Trends in Mathematics. Boston: Birkhäuser, 2000, 405−418
|
| [15] |
Rouquier R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq, 2012, 19: 359−410
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg