Acyclic coloring of graphs without bichromatic long path

Jianfeng HOU , Shufei WU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1343 -1354.

PDF (149KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1343 -1354. DOI: 10.1007/s11464-015-0497-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Acyclic coloring of graphs without bichromatic long path

Author information +
History +
PDF (149KB)

Abstract

Let G be a graph of maximum degree Δ. A proper vertex coloring of G is acyclic if there is no bichromatic cycle. It was proved by Alon et al. [Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277−288] that G admits an acyclic coloring with O4/3) colors and a proper coloring with O(k−1)/(k−2)) colors such that no path with k vertices is bichromatic for a fixed integer k≥5. In this paper, we combine above two colorings and show that if k≥5 and G does not contain cycles of length 4, then G admits an acyclic coloring with O(k−1)/(k−2)) colors such that no path with k vertices is bichromatic.

Keywords

Coloring / acyclic / path / entropy compression

Cite this article

Download citation ▾
Jianfeng HOU, Shufei WU. Acyclic coloring of graphs without bichromatic long path. Front. Math. China, 2015, 10(6): 1343-1354 DOI:10.1007/s11464-015-0497-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alon N, Mcdiarmid C, Reed B. Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277−288

[2]

Alon N, Mohar B, Sanders D P. On acyclic colorings of graphs on surfaces. Israel J Math, 1996, 94(1): 273−283

[3]

Borodin O V. On acyclic colorings of planar graphs. Discrete Math, 1979, 25(3): 211−236

[4]

Borodin O V, Flaass F D, Kostochka A V, Raspaud A, Sopena É. Acyclic list 7-coloring of planar graphs. J Graph Theory, 2002, 40(2): 83−90

[5]

Borodin O V, Kostochka A V, Raspaud A, Sopena É. Acyclic colouring of 1-planar graphs. Discrete Appl Math, 2001, 114(1): 29−41

[6]

Chen M, Raspaud A. A sufficient condition for planar graphs to be acyclically 5-choosable. J Graph Theory, 2012, 70(2): 135−151

[7]

Chen M, Raspaud A. Planar graphs without 4- and 5-cycles are acyclically 4-choosable. Discrete Appl Math, 2013, 161: 921−931

[8]

Chen M, Raspaud A, Roussel N, Zhu X. Acyclic 4-choosability of planar graphs. Discrete Math, 2011, 311(1): 92−101

[9]

Coleman T F, Cai J. The acyclic coloring problem and estimation of spare Hessian matrices. SIAM J Algebraic Discrete Methods, 1986, 7(2): 221−235

[10]

Coleman T F, Moré J J. Estimation of sparse Hessian matrices and graph coloring problems. Math Program, 1984, 28(3): 243−270

[11]

Drmota M. Combinatorics and asymptotics on trees. Cubo, 2004, 6(2): 105−136

[12]

Esperet L, Parreau A. Acyclic edge-coloring using entropy compression. European J Combin, 2013, 34(6): 1019−1027

[13]

Fertin G, Raspaud A, Reed B. Star coloring of graphs. J Graph Theory, 2004, 47(3): 163−182

[14]

Flajolet P, Sedgewick R. Analytic Combinatorics. London: Cambridge University Press, 2009

[15]

Grünbaum B. Acyclic colorings of planar graphs. Israel J Math, 1973, 14(4): 390−408

[16]

Kostochka A V, Mel’nikov L. Note to the paper of Grünbaum on acyclic colorings. Discrete Math, 1976, 14(4): 403−406

[17]

Kostochka A V, Sopena É, Zhu X. Acyclic and oriented chromatic numbers of graphs. J Graph Theory, 1997, 24(4): 331−340

[18]

Montassier M, Raspaud A, Wang W. Acyclic 5-choosability of planar graphs without small cycles. J Graph Theory, 2007, 54(3): 245−260

[19]

Moser R A, Tardos G. A constructive proof of the general Lovász Local Lemma. J ACM, 2010, 57(2): 11

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (149KB)

979

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/