Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables

Qinghua XU , Ting YANG , Taishun LIU , Huiming XU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1461 -1472.

PDF (133KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1461 -1472. DOI: 10.1007/s11464-015-0496-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables

Author information +
History +
PDF (133KB)

Abstract

Let K be the familiar class of normalized convex functions in the unit disk. Keogh and Merkes proved the well-known result that maxfK|a3λa22|max{1/3,|λ1|},λ, and the estimate is sharp for each λ. We investigate the corresponding problem for a subclass of quasi-convex mappings of type B defined on the unit ball in a complex Banach space or on the unit polydisk in n. The proofs of these results use some restrictive assumptions, which in the case of one complex variable are automatically satisfied.

Keywords

Fekete-Szegö problem / quasi-convex mappings of type A / quasiconvex mappings of type B / quasi-convex mappings of type C

Cite this article

Download citation ▾
Qinghua XU, Ting YANG, Taishun LIU, Huiming XU. Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables. Front. Math. China, 2015, 10(6): 1461-1472 DOI:10.1007/s11464-015-0496-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szegö problem for concave univalent functions. J Math Anal Appl, 2011, 373: 432−438

[2]

Bieberbach L. Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten. S B Preuss: Akad Wiss, 1916

[3]

Cartan H. Sur la possibilité d’étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. In: Montel P, ed. Lecons sur les Fonctions Univalentes ou Multivalentes. Paris: Gauthier-Villars, 1933

[4]

de Branges L. A proof of the Bieberbach conjecture. Acta Math, 1985, 154(1−2): 137−152

[5]

Duren P L. Univalent Functions, Berlin: Springer-Verlag, 1983

[6]

Fekete M, Szegö G. Eine Bemerkunguber ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8: 85−89

[7]

Gong S. The Bieberbach Conjecture. Providence: Amer Math Soc/International Press, 1999

[8]

Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canad J Math, 2002, 54: 324−351

[9]

Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003

[10]

Graham I, Kohr G, Kohr M. Loewner chains and parametric representation in several complex variables. J Math Anal Appl, 2003, 281: 425−438

[11]

Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math Ser B, 2008, 29(4): 353−368

[12]

Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317: 302−319

[13]

Kanas S. An unified approach to the Fekete-Szegö problem. Appl Math Comput, 2012, 218: 8453−8461

[14]

Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20: 8−12

[15]

Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in ℂn. Complex Variables, 1998, 36: 261−284

[16]

Kowalczyk B, Lecko A. Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function. Acta Math Sci Ser B Engl Ed, 2014, 34(5): 1571−1583

[17]

London R R. Fekete-Szegö inequalities for close-to-convex functions. Proc Amer Math Soc, 1993, 117(4): 947−950

[18]

Liu X S, Liu T S. The refining estimation of homogeneous expansions for quasi-convex mappings. Adv Math (China), 2007, 36: 679−685

[19]

Liu X S, Liu T S. On the quasi-convex mappings on the unit polydisk in ℂn. J Math Anal Appl, 2007, 335: 43−55

[20]

Liu X S, Liu T S. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂn. Chin. Ann Math Ser B, 2011, 32: 241−252

[21]

Pfluger A. The Fekete-Szegö inequality for complex parameter. Complex Var Theory Appl, 1986, 7: 149−160

[22]

Pommerenke C. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975

[23]

Roper K, Suffridge T J. Convexity properties of holomorphic mappings in ℂn. Trans Amer Math Soc, 1999, 351: 1803−1833

[24]

Sheil-Small T. On convex univalent functions. J Lond Math Soc, 1969, 1: 483−492

[25]

Suffridge T J. Some remarks on convex maps of the unit disc. Duke Math J, 1970, 37: 775−777

[26]

Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A, 2009, 52: 677−686

[27]

Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389: 781−791

[28]

Zhang W J, Liu T S. The growth and covering theorems for quasi-convex mappings on the unit ball in complex Banach spaces. Sci China Ser A, 2002, 45: 1538−1547

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (133KB)

994

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/