Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables
Qinghua XU, Ting YANG, Taishun LIU, Huiming XU
Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables
Let be the familiar class of normalized convex functions in the unit disk. Keogh and Merkes proved the well-known result that , and the estimate is sharp for each λ. We investigate the corresponding problem for a subclass of quasi-convex mappings of type B defined on the unit ball in a complex Banach space or on the unit polydisk in . The proofs of these results use some restrictive assumptions, which in the case of one complex variable are automatically satisfied.
Fekete-Szegö problem / quasi-convex mappings of type A / quasiconvex mappings of type B / quasi-convex mappings of type C
[1] |
Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szegö problem for concave univalent functions. J Math Anal Appl, 2011, 373: 432−438
CrossRef
Google scholar
|
[2] |
Bieberbach L. Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten. S B Preuss: Akad Wiss, 1916
|
[3] |
Cartan H. Sur la possibilité d’étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. In: Montel P, ed. Lecons sur les Fonctions Univalentes ou Multivalentes. Paris: Gauthier-Villars, 1933
|
[4] |
de Branges L. A proof of the Bieberbach conjecture. Acta Math, 1985, 154(1−2): 137−152
CrossRef
Google scholar
|
[5] |
Duren P L. Univalent Functions, Berlin: Springer-Verlag, 1983
|
[6] |
Fekete M, Szegö G. Eine Bemerkunguber ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8: 85−89
CrossRef
Google scholar
|
[7] |
Gong S. The Bieberbach Conjecture. Providence: Amer Math Soc/International Press, 1999
|
[8] |
Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canad J Math, 2002, 54: 324−351
CrossRef
Google scholar
|
[9] |
Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003
|
[10] |
Graham I, Kohr G, Kohr M. Loewner chains and parametric representation in several complex variables. J Math Anal Appl, 2003, 281: 425−438
CrossRef
Google scholar
|
[11] |
Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math Ser B, 2008, 29(4): 353−368
CrossRef
Google scholar
|
[12] |
Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317: 302−319
CrossRef
Google scholar
|
[13] |
Kanas S. An unified approach to the Fekete-Szegö problem. Appl Math Comput, 2012, 218: 8453−8461
CrossRef
Google scholar
|
[14] |
Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20: 8−12
CrossRef
Google scholar
|
[15] |
Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in
|
[16] |
Kowalczyk B, Lecko A. Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function. Acta Math Sci Ser B Engl Ed, 2014, 34(5): 1571−1583
CrossRef
Google scholar
|
[17] |
London R R. Fekete-Szegö inequalities for close-to-convex functions. Proc Amer Math Soc, 1993, 117(4): 947−950
CrossRef
Google scholar
|
[18] |
Liu X S, Liu T S. The refining estimation of homogeneous expansions for quasi-convex mappings. Adv Math (China), 2007, 36: 679−685
|
[19] |
Liu X S, Liu T S. On the quasi-convex mappings on the unit polydisk in
|
[20] |
Liu X S, Liu T S. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in
|
[21] |
Pfluger A. The Fekete-Szegö inequality for complex parameter. Complex Var Theory Appl, 1986, 7: 149−160
CrossRef
Google scholar
|
[22] |
Pommerenke C. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975
|
[23] |
Roper K, Suffridge T J. Convexity properties of holomorphic mappings in
|
[24] |
Sheil-Small T. On convex univalent functions. J Lond Math Soc, 1969, 1: 483−492
CrossRef
Google scholar
|
[25] |
Suffridge T J. Some remarks on convex maps of the unit disc. Duke Math J, 1970, 37: 775−777
CrossRef
Google scholar
|
[26] |
Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A, 2009, 52: 677−686
CrossRef
Google scholar
|
[27] |
Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389: 781−791
CrossRef
Google scholar
|
[28] |
Zhang W J, Liu T S. The growth and covering theorems for quasi-convex mappings on the unit ball in complex Banach spaces. Sci China Ser A, 2002, 45: 1538−1547
|
/
〈 | 〉 |