Wakimoto modules for twisted multi-loop algebra of type A1 × A1
Dexin LAN, Xiaoli KONG, Jinglian JIANG
Wakimoto modules for twisted multi-loop algebra of type A1 × A1
We construct a class of modules for the twisted multi-loop algebra of type A1×A1 by applying Wakimoto free bosonic realization. We also discuss the structures and the irreducibility of the Fock space.
Twisted multi-loop algebra / Wakimoto module / Free bosonic field
[1] |
Azam S. Derivations of multi-loop algebras. Forum Math, 2007, 19: 1029–1045
CrossRef
Google scholar
|
[2] |
Batra P. Representations of twisted multi-loop Lie algebras. J Algebra, 2004, 272: 404–416
CrossRef
Google scholar
|
[3] |
Chen C, Lian H, Tan S. Automorphism group and representation of a twisted multiloop algebra. Acta Math Sin (Engl Ser), 2010, 26(1): 143–154
CrossRef
Google scholar
|
[4] |
Gao Y, Zeng Z. Hermitian representations of the extended affine Lie algebra
CrossRef
Google scholar
|
[5] |
Kong X. Derivations and the universal central extension of the gradation shifting toroidal Lie algebra ℒ4. J Xiamen Univ Natur Sci, 2009, 48: 305–309 (in Chinese)
|
[6] |
Lian H, Tan S. Structure and representation for a class of infinite-dimensional Lie algebras. J Algebra, 2007, 307: 804–828
CrossRef
Google scholar
|
[7] |
Mao X, Tan S. Vertex operator representations for TKK algebras. J Algebra, 2007, 308: 704–733
CrossRef
Google scholar
|
[8] |
Mao X, Tan S. Wakimoto representation for Tits-Kantor-Koecher Lie algebras. Chinese Ann Math Ser A, 2007, 28: 329–338 (in Chinese)
|
[9] |
Rao S E. Classification of irreducible integrable modules for multi-loop algebras with finite-dimensional weight spaces. J Algebra, 2001, 246: 215–225
CrossRef
Google scholar
|
[10] |
Tan S. TKK algebras and vertex operator representations. J Algebra, 1999, 211: 298–342
CrossRef
Google scholar
|
/
〈 | 〉 |