Wakimoto modules for twisted multi-loop algebra of type A1 × A1

Dexin LAN , Xiaoli KONG , Jinglian JIANG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 323 -338.

PDF (139KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 323 -338. DOI: 10.1007/s11464-015-0493-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Wakimoto modules for twisted multi-loop algebra of type A1 × A1

Author information +
History +
PDF (139KB)

Abstract

We construct a class of modules for the twisted multi-loop algebra of type A1×A1 by applying Wakimoto free bosonic realization. We also discuss the structures and the irreducibility of the Fock space.

Keywords

Twisted multi-loop algebra / Wakimoto module / Free bosonic field

Cite this article

Download citation ▾
Dexin LAN, Xiaoli KONG, Jinglian JIANG. Wakimoto modules for twisted multi-loop algebra of type A1 × A1. Front. Math. China, 2016, 11(2): 323-338 DOI:10.1007/s11464-015-0493-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azam S. Derivations of multi-loop algebras. Forum Math, 2007, 19: 1029–1045

[2]

Batra P. Representations of twisted multi-loop Lie algebras. J Algebra, 2004, 272: 404–416

[3]

Chen C, Lian H, Tan S. Automorphism group and representation of a twisted multiloop algebra. Acta Math Sin (Engl Ser), 2010, 26(1): 143–154

[4]

Gao Y, Zeng Z. Hermitian representations of the extended affine Lie algebra gI2(ℂq) ˜. Adv Math, 2006, 207: 244–265

[5]

Kong X. Derivations and the universal central extension of the gradation shifting toroidal Lie algebra ℒ4. J Xiamen Univ Natur Sci, 2009, 48: 305–309 (in Chinese)

[6]

Lian H, Tan S. Structure and representation for a class of infinite-dimensional Lie algebras. J Algebra, 2007, 307: 804–828

[7]

Mao X, Tan S. Vertex operator representations for TKK algebras. J Algebra, 2007, 308: 704–733

[8]

Mao X, Tan S. Wakimoto representation for Tits-Kantor-Koecher Lie algebras. Chinese Ann Math Ser A, 2007, 28: 329–338 (in Chinese)

[9]

Rao S E. Classification of irreducible integrable modules for multi-loop algebras with finite-dimensional weight spaces. J Algebra, 2001, 246: 215–225

[10]

Tan S. TKK algebras and vertex operator representations. J Algebra, 1999, 211: 298–342

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (139KB)

746

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/