Minimizers of anisotropic Rudin-Osher-Fatemi models
Ruiling JIA, Meiyue JIANG
Minimizers of anisotropic Rudin-Osher-Fatemi models
We give the explicit formulas of the minimizers of the anisotropic Rudin-Osher-Fatemi models
where is a domain, is an anisotropic norm on , and f is a solution of the anisotropic 1-Laplacian equations.
Anisotropic Rudin-Osher-Fatemi (ROF) model /
Euler-Lagrange equation /
[1] |
Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process, 1997, 45: 913−917
CrossRef
Google scholar
|
[2] |
Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Oxford University Press, 2000
|
[3] |
Andreu-Vaillo F, Ballester C, Caselles V, Mazón J M. Minimizing total variation flow. Differential Integral Equations, 2001, 14: 321−360
|
[4] |
Andreu-Vaillo F, Caselles V, Mazón J M. Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Basel-Boston-Berlin: Birkhäuser, 2004
CrossRef
Google scholar
|
[5] |
Bellettini G. Anisotropic and crystalline mean curvature flow. In: Bao D, Bryant R L, Chern S S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, 50. Cambridge: Cambridge Press, 2004, 49−82
|
[6] |
Bellettini G, Caselles V, Novaga M. The total variation flow in RN. J Differential Equations, 2002, 184: 475−525
CrossRef
Google scholar
|
[7] |
Chambolle A, Lions P L. Image recovery via tota<?Pub Caret?>l variation minimization and related problems. Numer Math, 1997, 76: 167−188
CrossRef
Google scholar
|
[8] |
Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM J Appl Math, 2005, 65: 1817−1837
CrossRef
Google scholar
|
[9] |
Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of denoising and segmentation models. SIAM J Appl Math, 2006, 66: 1632−1648
CrossRef
Google scholar
|
[10] |
Chan T F, Esedoglu S, Park F, Yip A. Total variation image restoration: overview and recent developments. In: Paragios N, Chen Y M, Faugeras O, eds. Handbook of Mathematical Models in Computer Vision. New York: Springer, 2006, 17−31
CrossRef
Google scholar
|
[11] |
Chang K-C. The spectrum of the 1-Laplace operator. Commun Contemp Math, 2009, 11: 865−894
CrossRef
Google scholar
|
[12] |
Esedoglu S, Osher S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Comm Pure Appl Math, 2004, 57: 1609−1626
CrossRef
Google scholar
|
[13] |
Giusti E. On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions. Invent Math, 1978, 46: 111−137
CrossRef
Google scholar
|
[14] |
Jiang M-Y. Eigenfunctions of 1-Laplacian and Minimizers of the Rudin-Osher-Fatemi Functionals. Research Report, No 49. Institute of Mathematics Peking University, 2012
|
[15] |
Jiang M-Y. Minimizers of the Rudin-Osher-Fatemi functionals in bounded domains. Adv Nonlinear Stud, 2014, 14: 31−46
|
[16] |
Kawohl B, Schuricht F. Dirichlet problems for the 1-Laplacian operator, including the eigenvalue problem. Commun Contemp Math, 2007, 9: 515−543
CrossRef
Google scholar
|
[17] |
Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Providence: Amer Math Soc, 2001
|
[18] |
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259−268
CrossRef
Google scholar
|
[19] |
Strong D, Chan T F. Exact solutions to total variation regularization problems. UCLA CAM Report, 1996
|
/
〈 | 〉 |