Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes

Yuanyuan LIU, Yuhui ZHANG

PDF(146 KB)
PDF(146 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 933-947. DOI: 10.1007/s11464-015-0488-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes

Author information +
History +

Abstract

We obtain sufficient criteria for central limit theorems (CLTs) for ergodic continuous-time Markov chains (CTMCs). We apply the results to establish CLTs for continuous-time single birth processes. Moreover, we present an explicit expression of the time average variance constant for a single birth process whenever a CLT exists. Several examples are given to illustrate these results.

Keywords

Markov process / single birth processes / central limit theorem (CLT) / ergodicity

Cite this article

Download citation ▾
Yuanyuan LIU, Yuhui ZHANG. Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes. Front. Math. China, 2015, 10(4): 933‒947 https://doi.org/10.1007/s11464-015-0488-5

References

[1]
Abate J, Whitt W. Spectral theory for skip-free Markov chains. Probab Engrg Inform Sci, 1989, 3(1): 77-88
CrossRef Google scholar
[2]
Asmussen S. Applied Probability and Queues. 2nd ed. New York: Springer-Verlag, 2003
[3]
Asmussen S, Bladt M. Poisson’s equation for queues driven by a Markovian marked point process. Queueing Syst, 1994, 17: 235-274
CrossRef Google scholar
[4]
Bladt M. The variance constant for the actual waiting time of the PH/PH/1 queue. Ann Appl Probab, 1996, 6(3): 766-777
CrossRef Google scholar
[5]
Chen M F. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains. Stochastic Process Appl, 2000, 87: 281-297
CrossRef Google scholar
[6]
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2003
[7]
Glynn P W. Poisson’s equation for the recurrent M/G/1 queue. Adv Appl Probab, 1994, 26: 1044-1062
CrossRef Google scholar
[8]
Glynn P W, Whitt W. Necessary conditions for limit theorems in cumulative processes. Stochastic Process Appl, 2002, 98: 199-209
CrossRef Google scholar
[9]
Hou Z, Guo Q. Homogeneous Denumerable Markov Processes. New York/Beijing: Springer-Verlag/Science Press, 1988
[10]
Hou Z, Liu Y. Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues. J Appl Probab, 2004, 41(3): 778-790
CrossRef Google scholar
[11]
Hou Z, Liu Y, Zhang H. Subgeometric rates of convergence for a class of continuoustime Markov processes. J Appl Probab, 2005, 42(3): 698-712
CrossRef Google scholar
[12]
Jiang S, Liu Y, Yao S. Poisson’s equation for discrete-time single-birth processes. Statist Probab Lett, 2014, 85: 78-83
CrossRef Google scholar
[13]
Jones G L. On the Markov chain central limit theorem. Probab Surv, 2004, 1: 299-320
CrossRef Google scholar
[14]
Liu Y. Additive functionals for discrete-time Markov chains with applications to birthdeath processes. J Appl Probab, 2011, 48(4): 925-937
CrossRef Google scholar
[15]
Liu Y, Wang P, Xie Y. Deviation matrix and asymptotic variance for GI/M/1-type Markov chains. Front Math China, 2014, 9(4): 863-880
CrossRef Google scholar
[16]
Liu Y, Zhang H, Zhao Y. Subgeometric ergodicity for continuous-time Markov chains. J Math Anal Appl, 2010, 368: 178-189
CrossRef Google scholar
[17]
Mao Y H. Ergodic degrees for continuous-time Markov chains. Sci China Ser A, 2004, 47: 161-174
CrossRef Google scholar
[18]
Mao Y H, Zhang Y H. Exponential ergodicity for single birth processes. J Appl Probab, 2004, 41(4): 1022-1032
CrossRef Google scholar
[19]
Meyn S P, Tweedie R L. Generalized resolvents and Harris recurrence of Markov processes. In: Cohn H, ed. Doeblin and Modern Probability: Proceedings of the Doeblin Conference. 50 Years After Doeblin: Development in the Theory of Markov Chains, Markov Processes, and Sums of Random Variables. Contemp Math, 149. Providence: Amer Math Soc, 1993, 227-250
CrossRef Google scholar
[20]
Roberts G O, Rosenthal J S. General state space Markov chains and MCMC algorithms. Probab Surv, 2004, 1: 20-71
CrossRef Google scholar
[21]
Whitt W. Asymptotic formulas for Markov processes with applications to simulations. Oper Res, 1992, 40: 279-291
CrossRef Google scholar
[22]
Zhang Y H. Strong ergodicity for single birth processes. J Appl Probab, 2001, 38(1): 270-277
CrossRef Google scholar
[23]
Zhang Y H. The hitting time and stationary distribution for s<?Pub Caret?>ingle birth processes. J Beijing Normal Univ, 2004, 40(2): 157-161 (in Chinese)
[24]
Zhang Y H. A note on exponential ergodicity and ℓ-ergodicity of single birth processes. J Beijing Normal Univ, 2010, 46(1): 1-5 (in Chinese)
[25]
Zhang Y H, Zhao Q Q. Some single birth Q-matrices (I). J Beijing Normal Univ, 2006, 42(2): 111-115 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(146 KB)

Accesses

Citations

Detail

Sections
Recommended

/