Strong law of large numbers for supercritical superprocesses under second moment condition
Zhen-Qing CHEN, Yan-Xia REN, Renming SONG, Rui ZHANG
Strong law of large numbers for supercritical superprocesses under second moment condition
Consider a supercritical superprocess X = {Xt, t≥0} on a locally compact separable metric space (E,m). Suppose that the spatial motion of X is a Hunt process satisfying certain conditions and that the branching mechanism is of the form
where , and n is a kernel from E to (0,+∞) satisfying . Put . Suppose that the semigroup {Tt; t≥0}is compact. Let λ0 be the eigenvalue of the (possibly non-symmetric) generator L of {Tt}that has the largest real part among all the eigenvalues of L, which is known to be real-valued. Let and be the eigenfunctions of L and (the dual of L) associated with λ0, respectively. Assume λ0>0. Under some conditions on the spatial motion and the -transform of the semigroup {Tt}, we prove that for a large class of suitable functions f,
for any finite initial measure μ on E with compact support, where W∞ is the martingale limit defined by . Moreover, the exceptional set in the above limit does not depend on the initial measure μ and the function f.
Superprocess / scaling limit theorem / Hunt process / spectral gap / h-transform / martingale measure
[1] |
Bass R F, Chen Z-Q. Brownian motion with singular drift. Ann Probab, 2013, 31: 791-817
|
[2] |
Chen Z-Q, Kim P, Song R. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann Probab, 2012, 40: 2483-2538
CrossRef
Google scholar
|
[3] |
Chen Z-Q, Kim P, Song R. Dirichlet heat kernel estimates for rotationally symmetric Lévy processes. Proc Lond Math Soc, 2014, 109: 90-120
CrossRef
Google scholar
|
[4] |
Chen Z-Q, Kim P, Song R. Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbations. Trans Amer Math Soc, 2015, 367: 5237-5270
CrossRef
Google scholar
|
[5] |
Chen Z-Q, Kim P, Song R. Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components. J Reine Angew Math, Ahead of print,
CrossRef
Google scholar
|
[6] |
Chen Z-Q, Kumagai T. A priori Höolder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoam, 2010, 26: 551-589
CrossRef
Google scholar
|
[7] |
Chen Z-Q, Ren Y-X, Wang H. An almost sure scaling limit theorem for Dawson-Watanabe superprocesses. J Funct Anal, 2008, 254: 1988-2019
CrossRef
Google scholar
|
[8] |
Chen Z-Q, Yang T. Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation. Preprint, 2015, arXiv: 1503.05302
|
[9] |
Davies E B, Simon B. Ultracontractivity and the kernel for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335-395
CrossRef
Google scholar
|
[10] |
Eckhoff M, Kyprianou A E, Winkel M. Spine, skeletons and the strong law of large numbers for superdiffusion. Ann Probab (To appear), arXiv: 1309.6196
|
[11] |
Engländer J. Law of large numbers for superdiffusions: The non-ergodic case. Ann Inst Henri Poincaré Probab Stat, 2009, 45: 1-6
CrossRef
Google scholar
|
[12] |
Engländer J, Harris S C, Kyprianou A E. Strong law of large numbers for branching diffusions. Ann Inst Henri Poincaré Probab Stat, 2010, 46(1): 279-298
CrossRef
Google scholar
|
[13] |
Engländer J, Turaev D. A scaling limit theorem for a class of superdiffusions. Ann Probab, 2002, 30: 683-722
CrossRef
Google scholar
|
[14] |
Engländer J, Winter A. Law of large numbers for a class of superdiffusions. Ann Inst Henri Poincaré Probab Stat, 2006, 42: 171-185
CrossRef
Google scholar
|
[15] |
Kim P, Song R. Two-sided estimates on the density of Brownian motion with singular drift. Illinois J Math, 2006, 50: 635-688
|
[16] |
Kim P, Song R. On dual processes of non-symmetric diffusions with measure-valued drifts. Stochastic Process Appl, 2008, 118: 790-817
CrossRef
Google scholar
|
[17] |
Kim P, Song R. Intrinsic ultracontractivity of non-symmetric diffusions with measurevalued drifts and potentials. Ann Probab, 2008, 36: 1904-1945
CrossRef
Google scholar
|
[18] |
Kim P, Song R. Stable process with singular drift. Stochastic Process Appl, 2014, 124: 2479-2516
CrossRef
Google scholar
|
[19] |
Kim P, Song R. Dirichlet heat kernel estimates for stable processes with singular drift in unbounded C1,1 open sets. Potential Anal, 2014, 41: 555-581
CrossRef
Google scholar
|
[20] |
Kouritzin M A, Ren Y-X. A strong law of large numbers for super-stable Processes. Stochastic Process Appl, 2014, 121: 505-521
CrossRef
Google scholar
|
[21] |
Li Z. Measure-valued Branching Markov Processes. Heidelberg: Springer, 2011
CrossRef
Google scholar
|
[22] |
Liu R-L, Ren Y-X, Song R. Strong law of large numbers for a class of superdiffusions. Acta Appl Math, 2013, 123: 73-97
CrossRef
Google scholar
|
[23] |
Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer, 1983
CrossRef
Google scholar
|
[24] |
Ren Y-X, Song R, Zhang R. Central limit theorems for supercritical superprocesses. Stochastic Process Appl, 2015, 125: 428-457
CrossRef
Google scholar
|
[25] |
Ren Y-X, Song R, Zhang R. Central limit theorems for supercritical branching nonsymmetric Markov processes. Ann Probab (to appear), arXiv: 1404.0116
|
[26] |
Ren Y-X, Song R, Zhang R. Functional central limit theorems for supercritical superprocesses. Preprint, 2014, arXiv: 1410.1598
|
[27] |
Ren Y-X, Song R, Zhang R. Limit theorems for some critical superprocesses. Preprint, 2014, arXiv: 1403.1342
|
[28] |
Sato K-I. Lévy Processes and Infinitely Divisible Distribution. Cambridge: Cambridge University Press, 1999
|
[29] |
Schaefer H H. Banach Lattices and Positive Operators. New York: Springer, 1974
CrossRef
Google scholar
|
[30] |
Stroock D W. Probability Theory. An Analytic View. 2nd ed. Cambridge: Cambridge University Press, 2011
|
[31] |
Wang L. An almost sure limit theorem for super-Brownian motion. J Theoret Probab, 2010, 23: 401-416
CrossRef
Google scholar
|
/
〈 | 〉 |