Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle

Yan ZHU , Haiyan GUAN , Shenglin ZHOU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1483 -1496.

PDF (149KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1483 -1496. DOI: 10.1007/s11464-015-0480-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle

Author information +
History +
PDF (149KB)

Abstract

Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1. We prove that if D is a nontrivial 2-(v, k, λ) symmetric design with (k, λ) = 1 and G≤Aut(D) is flag-transitive with Soc(G) = An for n≥5, then D is the projective space PG2(3,2) and G = A7.

Keywords

Symmetric design / automorphism group / alternating group / flagtransitive

Cite this article

Download citation ▾
Yan ZHU, Haiyan GUAN, Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle. Front. Math. China, 2015, 10(5): 1483-1496 DOI:10.1007/s11464-015-0480-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davies H. Flag-transitivity and primitivity. Discrete Math, 1987, 63: 91−93

[2]

Delandtsheer A. Finite flag-transitive linear spaces with alternating socle. In: Betten A, ed. Algebraic Combinatorics and Applications. Proceedings of the Euroconference, ALCOMA, Gößeinstein, Germany, September 12−19, 1999. Berlin: Springer, 2001, 79−88

[3]

Dembowski P. Finite Geometries. New York: Springer-Verlag, 1968

[4]

Dempwolff U. Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr, 2001, 22: 191−207

[5]

Dong H L, Zhou S L. Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs. J Combin Des, 2011, 19: 475−483

[6]

Dong H L, Zhou S L. Flag-transitive primitive (v, k, λ)-symmetric designs with λ at most 10 and alternating groups. J Algebra Appl, 2014, 13(6): 1450025

[7]

Ionin Y J, Trung van T. Symmetric designs. In: Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs. Boca Raton: Chapman Hall/CRC, 2007, 110−124

[8]

Kantor W M. Primitive permutation groups of odd degree, and application to finite projective planes. J Algebra, 1987, 106(1): 15−45

[9]

Liebeck M W, Praeger C E, Saxl J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365−383

[10]

Liebeck M W, Saxl J. The primitive permutation groups of odd degree. J Lond Math Soc, 1985, 31(2): 250−264

[11]

O’Reilly Regueiro E. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. European J Combin, 2005, 26: 577−584

[12]

O’Reilly Regueiro E. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135−148

[13]

Praeger C E. The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair. Des Codes Cryptogr, 2007, 44: 115−132

[14]

The GAP Group. GAP-Groups, Algorithms, and Programming. Version 4.4, Aachen, St. Andrews, 2004

[15]

Tian D L, Zhou S L. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127−141

[16]

Tian D L, Zhou S L. Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle. J Combin Des, 2015, 23: 140−150

[17]

Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964

[18]

Zhou S L, Dong H L. Alternating groups and flag-transitive triplanes. Des Codes Cryptogr, 2010, 57: 117−126

[19]

Zhu Y, Tian D L, Zhou S L. Flag-transitive point-primitive (v, k, λ) symmetric designs with λ at most 100 and alternating socle. Math Slovaca (to appear)

[20]

Zieschang P H. Flag transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 369−375

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (149KB)

1051

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/