Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle

Yan ZHU, Haiyan GUAN, Shenglin ZHOU

PDF(149 KB)
PDF(149 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1483-1496. DOI: 10.1007/s11464-015-0480-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle

Author information +
History +

Abstract

Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1. We prove that if D is a nontrivial 2-(v, k, λ) symmetric design with (k, λ) = 1 and G≤Aut(D) is flag-transitive with Soc(G) = An for n≥5, then D is the projective space PG2(3,2) and G = A7.

Keywords

Symmetric design / automorphism group / alternating group / flagtransitive

Cite this article

Download citation ▾
Yan ZHU, Haiyan GUAN, Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle. Front. Math. China, 2015, 10(5): 1483‒1496 https://doi.org/10.1007/s11464-015-0480-0

References

[1]
Davies H. Flag-transitivity and primitivity. Discrete Math, 1987, 63: 91−93
CrossRef Google scholar
[2]
Delandtsheer A. Finite flag-transitive linear spaces with alternating socle. In: Betten A, ed. Algebraic Combinatorics and Applications. Proceedings of the Euroconference, ALCOMA, Gößeinstein, Germany, September 12−19, 1999. Berlin: Springer, 2001, 79−88
CrossRef Google scholar
[3]
Dembowski P. Finite Geometries. New York: Springer-Verlag, 1968
CrossRef Google scholar
[4]
Dempwolff U. Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr, 2001, 22: 191−207
CrossRef Google scholar
[5]
Dong H L, Zhou S L. Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs. J Combin Des, 2011, 19: 475−483
CrossRef Google scholar
[6]
Dong H L, Zhou S L. Flag-transitive primitive (v, k, λ)-symmetric designs with λ at most 10 and alternating groups. J Algebra Appl, 2014, 13(6): 1450025
CrossRef Google scholar
[7]
Ionin Y J, Trung van T. Symmetric designs. In: Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs. Boca Raton: Chapman Hall/CRC, 2007, 110−124
[8]
Kantor W M. Primitive permutation groups of odd degree, and application to finite projective planes. J Algebra, 1987, 106(1): 15−45
CrossRef Google scholar
[9]
Liebeck M W, Praeger C E, Saxl J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365−383
CrossRef Google scholar
[10]
Liebeck M W, Saxl J. The primitive permutation groups of odd degree. J Lond Math Soc, 1985, 31(2): 250−264
CrossRef Google scholar
[11]
O’Reilly Regueiro E. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. European J Combin, 2005, 26: 577−584
CrossRef Google scholar
[12]
O’Reilly Regueiro E. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135−148
CrossRef Google scholar
[13]
Praeger C E. The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair. Des Codes Cryptogr, 2007, 44: 115−132
CrossRef Google scholar
[14]
The GAP Group. GAP-Groups, Algorithms, and Programming. Version 4.4, Aachen, St. Andrews, 2004
[15]
Tian D L, Zhou S L. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127−141
CrossRef Google scholar
[16]
Tian D L, Zhou S L. Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle. J Combin Des, 2015, 23: 140−150
CrossRef Google scholar
[17]
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964
[18]
Zhou S L, Dong H L. Alternating groups and flag-transitive triplanes. Des Codes Cryptogr, 2010, 57: 117−126
CrossRef Google scholar
[19]
Zhu Y, Tian D L, Zhou S L. Flag-transitive point-primitive (v, k, λ) symmetric designs with λ at most 100 and alternating socle. Math Slovaca (to appear)
[20]
Zieschang P H. Flag transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 369−375
CrossRef Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(149 KB)

Accesses

Citations

Detail

Sections
Recommended

/