Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle
Yan ZHU, Haiyan GUAN, Shenglin ZHOU
Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle
Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1. We prove that if is a nontrivial 2-(v, k, λ) symmetric design with (k, λ) = 1 and G≤Aut() is flag-transitive with Soc(G) = An for n≥5, then is the projective space PG2(3,2) and G = A7.
Symmetric design / automorphism group / alternating group / flagtransitive
[1] |
Davies H. Flag-transitivity and primitivity. Discrete Math, 1987, 63: 91−93
CrossRef
Google scholar
|
[2] |
Delandtsheer A. Finite flag-transitive linear spaces with alternating socle. In: Betten A, ed. Algebraic Combinatorics and Applications. Proceedings of the Euroconference, ALCOMA, Gößeinstein, Germany, September 12−19, 1999. Berlin: Springer, 2001, 79−88
CrossRef
Google scholar
|
[3] |
Dembowski P. Finite Geometries. New York: Springer-Verlag, 1968
CrossRef
Google scholar
|
[4] |
Dempwolff U. Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr, 2001, 22: 191−207
CrossRef
Google scholar
|
[5] |
Dong H L, Zhou S L. Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs. J Combin Des, 2011, 19: 475−483
CrossRef
Google scholar
|
[6] |
Dong H L, Zhou S L. Flag-transitive primitive (v, k, λ)-symmetric designs with λ at most 10 and alternating groups. J Algebra Appl, 2014, 13(6): 1450025
CrossRef
Google scholar
|
[7] |
Ionin Y J, Trung van T. Symmetric designs. In: Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs. Boca Raton: Chapman Hall/CRC, 2007, 110−124
|
[8] |
Kantor W M. Primitive permutation groups of odd degree, and application to finite projective planes. J Algebra, 1987, 106(1): 15−45
CrossRef
Google scholar
|
[9] |
Liebeck M W, Praeger C E, Saxl J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365−383
CrossRef
Google scholar
|
[10] |
Liebeck M W, Saxl J. The primitive permutation groups of odd degree. J Lond Math Soc, 1985, 31(2): 250−264
CrossRef
Google scholar
|
[11] |
O’Reilly Regueiro E. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. European J Combin, 2005, 26: 577−584
CrossRef
Google scholar
|
[12] |
O’Reilly Regueiro E. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135−148
CrossRef
Google scholar
|
[13] |
Praeger C E. The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair. Des Codes Cryptogr, 2007, 44: 115−132
CrossRef
Google scholar
|
[14] |
The GAP Group. GAP-Groups, Algorithms, and Programming. Version 4.4, Aachen, St. Andrews, 2004
|
[15] |
Tian D L, Zhou S L. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127−141
CrossRef
Google scholar
|
[16] |
Tian D L, Zhou S L. Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle. J Combin Des, 2015, 23: 140−150
CrossRef
Google scholar
|
[17] |
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964
|
[18] |
Zhou S L, Dong H L. Alternating groups and flag-transitive triplanes. Des Codes Cryptogr, 2010, 57: 117−126
CrossRef
Google scholar
|
[19] |
Zhu Y, Tian D L, Zhou S L. Flag-transitive point-primitive (v, k, λ) symmetric designs with λ at most 100 and alternating socle. Math Slovaca (to appear)
|
[20] |
Zieschang P H. Flag transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 369−375
CrossRef
Google scholar
|
/
〈 | 〉 |