Color cyclic homology and Steinberg Lie color algebras

Yongjie WANG, Shikui SHANG, Yun GAO

PDF(188 KB)
PDF(188 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1179-1202. DOI: 10.1007/s11464-015-0468-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Color cyclic homology and Steinberg Lie color algebras

Author information +
History +

Abstract

The present paper contains two interrelated developments. First, the basic properties of the construction theory over the Steinberg Lie color algebras are developed in analogy with Steinberg Lie algebra case. This is done on the example of the central closed of the Steinberg Lie color algebras. The second development is that we define the first ϵ-cyclic homology group HC1(R, ϵ) of the Γ-graded associative algebra R (which could be seemed as the generalization of cyclic homology group and the /2-graded version of cyclic homology that was introduced by Kassel) to calculate the universal central extension of Steinberg Lie color algebras.

Keywords

Steinberg Lie color algebra / ϵ-cyclic homology group / universal central extension

Cite this article

Download citation ▾
Yongjie WANG, Shikui SHANG, Yun GAO. Color cyclic homology and Steinberg Lie color algebras. Front. Math. China, 2015, 10(5): 1179‒1202 https://doi.org/10.1007/s11464-015-0468-9

References

[1]
Blaga P A. On the Morita invariance of the Hochschild homology of superalgebras. Stud Univ Babeş-Bolyai Math, 2006, 51(1): 41–48
[2]
Chen H, Guay N. Central extensions of matrix Lie superalgebras over ℤ/2ℤ-graded algebras. Algebr Represent Theory, 2013, 16(2): 591–604
[3]
Gao Y. Steinberg unitary Lie algebras and skew-dihedral homology. J Algebra, 1996, 17: 261–304
CrossRef Google scholar
[4]
Gao Y, Shang S. Universal coverings of Steinberg Lie algebras of small characteristic. J Algebra, 2007, 311: 216–230
CrossRef Google scholar
[5]
Garland H. The arithmetic theory of loop groups. Publ Math Publ Math Inst Hautes Études Sci, 1980, 52: 5–136
CrossRef Google scholar
[6]
Kassel C. Algèbres enveloppantes et homologie cyclique. C R Acad Sci Paris Sér I Math, 1986, 303(16): 779–782
[7]
Kassel C, Loday J-L. Extensions centrales d’algèbres de Lie. Ann Inst Fourier, 1982, 32(4): 119–142
CrossRef Google scholar
[8]
Loday J-L. Cyclic Homology. Grundlehren Math Wiss, Vol 301. Berlin: Springer, 1992
CrossRef Google scholar
[9]
Neher N. An introduction to universal central extensions of Lie superalgebras. In: Groups, Rings, Lie and Hopf Algebras (St. John’s, NF, 2001). Math Appl, 555. Dordrecht: Kluwer Acad Publ, 2003, 141–166
CrossRef Google scholar
[10]
Rittenberg V, Wyler D. Sequences of ℤ2⊕ℤ2 graded Lie algebras and superalgebras. J Math Phys, 1978, 19: 2193–2200
[11]
Scheunert M, Zhang R B. Cohomology of Lie superalgebras and of their generations. J Math Phys, 1998, 39: 5024–5061
CrossRef Google scholar
[12]
Shang S, Chen H, Gao Y. Central extensions of Steinberg Lie superalgebras of small rank. Comm Algebra, 2007, 35(12): 4225–4244
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(188 KB)

Accesses

Citations

Detail

Sections
Recommended

/