Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space

Xiufu ZHANG

PDF(106 KB)
PDF(106 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1233-1242. DOI: 10.1007/s11464-015-0466-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space

Author information +
History +

Abstract

There are two extensions of Virasoro algebra with particular importance in superstring theory: the Ramond algebra and the Neveu-Schwarz algebra, which are Z2-graded extensions of the Virasoro algebra. In this paper, we show that the support of a simple weight module over the Ramond algebra with an infinite-dimensional weight space coincides with the weight lattice and that all intersections of non-trivial weight spaces and odd part or even part of the module are infinite-dimensional. This result together with the one that we have obtained over the Neveu-Schwarz algebra generalizes the result for the Virasoro algebra to the super-Virasoro algebras.

Keywords

Super-Virasoro algebra / Ramond algebra / weight module / Harish-Chandra module

Cite this article

Download citation ▾
Xiufu ZHANG. Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space. Front. Math. China, 2015, 10(5): 1233‒1242 https://doi.org/10.1007/s11464-015-0466-y

References

[1]
Astashkevich A. On the structure of Verm modules over Virasoro algebra and Neveu-Schwarz algebras. Comm Math Phys, 1997, 186: 531-562
CrossRef Google scholar
[2]
Chen H, Guo X, Zhao K. Tensor Product weight modules over the Virasoro algebra. J Lond Math Soc (2), 2013, 88: 829-834
[3]
Feigin B, Fuchs D. Representations of the Virasoro algebra. In: Representations of Lie groups and related topics. Adv Stud Contemp Math, Vol 7. New York: Gordon and Breach, 1990, 465-554
[4]
Guo X, Lu R, Zhao K. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721
[5]
Guo X, Lu R, Zhao K. Fraction representations and highest-weight-like representations of the Virasoro algebra. J Algebra, 2013, 387: 68-86
CrossRef Google scholar
[6]
Li J, Su Y. Irreducible weight modules over the twisted Schrödinger-Virasoro algebra. Acta Math Sin (Engl Ser), 2009, 25(4): 531-536
CrossRef Google scholar
[7]
Liu G, Lu R, Zhao K. A class of simple weight Virasoro modules. arXiv: 1211.0998
[8]
Lu R, Zhao K. Irreducible Virasoro modules from irreducible Weyl modules. J Algebra, 2014, 414: 271-287
CrossRef Google scholar
[9]
Lu R, Zhao K. A family of simple weight modules over the Virasoro algebra. arXiv: 1303.0702
[10]
Martin C, Piard A. Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac. Comm Math Phys, 1991, 137(1): 109-132
CrossRef Google scholar
[11]
Mathieu O. Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent Math, 1992, 107: 225-234
CrossRef Google scholar
[12]
Mazorchuk V, Zhao K. Classification of simple weight Virasoro modules with a finitedimensional weight space. J Algebra, 2007, 307: 209-214
CrossRef Google scholar
[13]
Mazorchuk V, Zhao K. Simple Virasoro modules which are locally finite over a positive part. Selecta Math (N S), 2014, 20(3): 839-854
CrossRef Google scholar
[14]
Shen R, Su Y. Classification of irreducible weight modules with a finite-dimensional weight space over twisted Heisenberg-Virasoro algebra. Acta Math Sin (Engl Ser), 2007, 23(1): 189-192
CrossRef Google scholar
[15]
Su Y. A classification of indecomposable sl2(ℂ)-modules and a conjecture of Kac on irreducible modules over the Virasoro algebra. J Algebra, 1993, 161: 33-46
[16]
Su Y. Classification of Harish-Chandra modules over the super-Virasoro algebras. Comm Algebra, 1995, 23: 3653-3675
CrossRef Google scholar
[17]
Tan H, Zhao K. Irreducible Virasoro modules from tensor products (II). J Algebra, 2013, 394: 357-373
CrossRef Google scholar
[18]
Zhang H. A class of representations over the Virasoro algebra. J Algebra, 1997, 190: 1-10
CrossRef Google scholar
[19]
Zhang X. Tensor product weight representations of the Neveu-Schwarz algebra. Comm Algebra (to appear)
[20]
Zhang X, Xia Z. Classification of simple weight modules for the Neveu-Schwarz algebra with a finite-dimensional weight space. Comm Algebra, 2012, 40: 2161-2170
CrossRef Google scholar
[21]
Zhao K. Representations of the Virasoro algebra I. J Algebra, 1995, 176: 882-907
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(106 KB)

Accesses

Citations

Detail

Sections
Recommended

/