Values of binary linear forms at prime arguments

Yuchao WANG

PDF(126 KB)
PDF(126 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1449-1459. DOI: 10.1007/s11464-015-0461-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Values of binary linear forms at prime arguments

Author information +
History +

Abstract

value of a given binary linear form at prime arguments. Let λ1 and λ2 be positive real numbers such that λ1/λ2 is irrational and algebraic. For any (C, c) well-spaced sequence V and δ>0, let E(V, X, δ) denote the number of υV with υX for which the inequality

|λ1p1+λ2ρ2υ|<υδ

has no solution in primes p1, p2. It is shown that for any ε>0,we have E(V, X, δ) «max(X35+2δ+ε,X23+43δ+ε).

Keywords

Circle method / Diophantine inequality

Cite this article

Download citation ▾
Yuchao WANG. Values of binary linear forms at prime arguments. Front. Math. China, 2015, 10(6): 1449‒1459 https://doi.org/10.1007/s11464-015-0461-3

References

[1]
Brüdern J, Cook R J, Perelli A. The values of binary linear forms at prime arguments. In: Greaves G R H, Harman G, Huxley M N, eds. Sieve Methods, Exponential Sums, and Their Applications in Number Theory. London Math Soc Lecture Note Ser, 237. Cambridge: Cambridge Univ Press, 1997, 87−100
CrossRef Google scholar
[2]
Cai Y. A remark on the values of binary linear forms at prime arguments. Arch Math (Basel), 2011, 97(5): 431−441
CrossRef Google scholar
[3]
Cook R J, Harman G. The values of additive forms at prime arguments. Rocky Mountain J Math, 2006, 36(4): 1153−1164
CrossRef Google scholar
[4]
Davenport H, Heilbronn H. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185−193
CrossRef Google scholar
[5]
Harman G. Diophantine approximation by prime numbers. J Lond Math Soc (2), 1991, 44(2): 218−226
[6]
Lu W C. Exceptional set of Goldbach number. J Number Theory, 2010, 130(10): 2359−2392
CrossRef Google scholar
[7]
Matomäki K. Diophantine approximation by primes. Glasg Math J, 2010, 52(1): 87−106
CrossRef Google scholar
[8]
Montgomery H L, Vaughan R C. The exceptional set in Goldbach’s problem. Acta Arith, 1975, 27: 353−370

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(126 KB)

Accesses

Citations

Detail

Sections
Recommended

/