Degree sum of a pair of independent edges and Z3-connectivity

Ziwen HUANG , Xiangwen LI

Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1533 -1567.

PDF (339KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1533 -1567. DOI: 10.1007/s11464-015-0457-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Degree sum of a pair of independent edges and Z3-connectivity

Author information +
History +
PDF (339KB)

Abstract

Let G be a 2-edge-connected simple graph on n vertices. For an edge e = uvE(G), define d(e) = d(u) + d(v). Let denote the set of all simple 2-edge-connected graphs on n≥4 vertices such that G if and only if d(e) + d(e')2n for every pair of independent edges e, e' of G. We prove in this paper that for each G, G is not Z3-connected if and only if G is one of K2,n−2, K3,n−3, K+2,n−2, K+3,n−3 or one of the 16 specified graphs, which generalizes the results of X. Zhang et al. [Discrete Math., 2010, 310: 3390–3397] and G. Fan and X. Zhou [Discrete Math., 2008, 308: 6233–6240].

Keywords

Z3-connectivity / nowhere-zero 3-flow / degree condition

Cite this article

Download citation ▾
Ziwen HUANG, Xiangwen LI. Degree sum of a pair of independent edges and Z3-connectivity. Front. Math. China, 2016, 11(6): 1533-1567 DOI:10.1007/s11464-015-0457-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondy J A, Murty U S R. Graph Theory with Application.New York: North-Holland, 1976

[2]

Chen J, Eschen E, Lai H-J. Group connectivity of certain graphs. Ars Combin, 2008, 89: 141–158

[3]

DeVos M, Xu R,Yu G. Nowhere-zero Z3-flows through Z3-connectivity. Discrete Math, 2006, 306: 26–30

[4]

Fan G, Zhou C. Degree sum and nowhere-zero 3-flows. Discrete Math, 2008, 308: 6233–6240

[5]

Fan G, Zhou C. Ore condition and nowhere-zero 3-flows. SIAM J Discrete Math, 2008, 22: 288–294

[6]

Jaeger F, Linial N, Payan C, Tarsi M. Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties. J Combin Theory Ser B, 1992, 56: 165–182

[7]

Lai H-J. Group connectivity of 3-edge-connected chordal graphs. Graphs Combin, 2000, 16: 165–176

[8]

Lai H-J. Nowhere-zero 3-flows in locally connected graphs. J Graph Theory, 2003, 4: 211–219

[9]

Lai H-J, Li X, Shao Y, Zhan M. Group connectivity and group colorings of graphs—a survey. Acta Math Sin (Engl Ser), 2011, 27: 405–434

[10]

Li X, Lai H-J, Shao Y. Degree condition and Z3-connectivity. Discrete Math, 2012, 312: 1658–1669

[11]

Lovász L M, Thomassen C, Wu Y, Zhang C-Q. Nowhere-zero 3-flows and modulo k-orientations. J Combin Theory Ser B, 2013, 103: 587–598

[12]

Luo R, Xu R, Yin J, Yu G. Ore-condition and Z3-connectivity. European J Combin, 2008, 29: 1587–1595

[13]

Thomassen C. The weak 3-flow conjecture and the weak circular flow conjecture. J Combin Theory Ser B, 2012, 102: 521–529

[14]

Tutte W T. A contribution on the theory of chromatic polynomial. Canad J Math, 1954, 6: 80–91

[15]

Yang F, Li X. Degree sum of 3 independent vertices and Z3-connectivity. Discrete Math, 2013, 313: 2493–2505

[16]

Zhang X, Zhan M, Xu R, Shao Y, Li X, Lai H-J. Degree sum condition for Z3-connectivity in graphs. Discrete Math, 2010, 310: 3390–3397

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (339KB)

757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/