Oscillations of coefficients of symmetric square L-functions over primes

Fei HOU

PDF(166 KB)
PDF(166 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1325-1341. DOI: 10.1007/s11464-015-0442-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillations of coefficients of symmetric square L-functions over primes

Author information +
History +

Abstract

Let L(s, sym2f) be the symmetric-square L-function associated to a primitive holomorphic cusp form f for SL(2,), with tf(n,1) denoting the nth coefficient of the Dirichlet series for it. It is proved that, for N≥2 and any α, there exists an effective positive constant c such that nNΛ(n)tf(n,1)e(nα)Nexp(clogN), where Λ(n) is the von Mangoldt function, and the implied constant only depends on f. We also study the analogue of Vinogradov’s three primes theorem associated to the coefficients of Rankin-Selberg L-functions.

Keywords

symmetric-square L-function / primitive holomorphic cusp form / Fourier coefficient

Cite this article

Download citation ▾
Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes. Front. Math. China, 2015, 10(6): 1325‒1341 https://doi.org/10.1007/s11464-015-0442-6

References

[1]
Davenport H. Multiplicative Number Theory. 3rd ed. Berlin: Springer-Verlag, 2000
[2]
Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273−307
CrossRef Google scholar
[3]
Fouvry É, Ganguly S. Strong orthogonality between the Möbius function, additive characters, and Fourier coefficients of cusp forms. Compos Math, 2014, 150: 763−797
CrossRef Google scholar
[4]
Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n, R). Cambridge: Cambridge Univ Press, 2006
CrossRef Google scholar
[5]
Hoffstein J, Lockhart P. Coefficients of Maass forms and the Siegel zero. Ann Math, 1994, 140: 161−181
CrossRef Google scholar
[6]
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004
[7]
Lau Y K, Lü G. Sums of Fourier coefficients of cusp forms. Q J Math, 2011, 62: 687−716
CrossRef Google scholar
[8]
Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481−497
CrossRef Google scholar
[9]
Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathematika, 1984, 31: 150−158
CrossRef Google scholar
[10]
Stephen M D. Cancellation in additively twisted sums on GL(n). Amer J Math, 2006, 128: 699−729
CrossRef Google scholar
[11]
Vaughan R C. An elementary method in prime number theory. Acta Arith, 1980, 37: 111−115
[12]
Vinogradov I M. Some theorems concerning the theory of primes. Mat Sb (N S), 1937, 2: 179−195

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(166 KB)

Accesses

Citations

Detail

Sections
Recommended

/