Oscillations of coefficients of symmetric square L-functions over primes

Fei HOU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1325 -1341.

PDF (166KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1325 -1341. DOI: 10.1007/s11464-015-0442-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillations of coefficients of symmetric square L-functions over primes

Author information +
History +
PDF (166KB)

Abstract

Let L(s, sym2f) be the symmetric-square L-function associated to a primitive holomorphic cusp form f for SL(2,), with tf(n,1) denoting the nth coefficient of the Dirichlet series for it. It is proved that, for N≥2 and any α, there exists an effective positive constant c such that nNΛ(n)tf(n,1)e(nα)Nexp(clogN), where Λ(n) is the von Mangoldt function, and the implied constant only depends on f. We also study the analogue of Vinogradov’s three primes theorem associated to the coefficients of Rankin-Selberg L-functions.

Keywords

symmetric-square L-function / primitive holomorphic cusp form / Fourier coefficient

Cite this article

Download citation ▾
Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes. Front. Math. China, 2015, 10(6): 1325-1341 DOI:10.1007/s11464-015-0442-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davenport H. Multiplicative Number Theory. 3rd ed. Berlin: Springer-Verlag, 2000

[2]

Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273−307

[3]

Fouvry É, Ganguly S. Strong orthogonality between the Möbius function, additive characters, and Fourier coefficients of cusp forms. Compos Math, 2014, 150: 763−797

[4]

Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n, R). Cambridge: Cambridge Univ Press, 2006

[5]

Hoffstein J, Lockhart P. Coefficients of Maass forms and the Siegel zero. Ann Math, 1994, 140: 161−181

[6]

Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004

[7]

Lau Y K, G. Sums of Fourier coefficients of cusp forms. Q J Math, 2011, 62: 687−716

[8]

Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481−497

[9]

Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathematika, 1984, 31: 150−158

[10]

Stephen M D. Cancellation in additively twisted sums on GL(n). Amer J Math, 2006, 128: 699−729

[11]

Vaughan R C. An elementary method in prime number theory. Acta Arith, 1980, 37: 111−115

[12]

Vinogradov I M. Some theorems concerning the theory of primes. Mat Sb (N S), 1937, 2: 179−195

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (166KB)

883

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/