![](/develop/static/imgs/pdf.png)
Lie bialgebra structure on cyclic cohomology of Fukaya categories
Xiaojun CHEN, Hai-Long HER, Shanzhong SUN
Lie bialgebra structure on cyclic cohomology of Fukaya categories
Let M be an exact symplectic manifold with contact type boundary such that c1(M) = 0. Motivated by noncommutative symplectic geometry and string topology, we show that the cyclic cohomology of the Fukaya category of M has an involutive Lie bialgebra structure.
Fukaya category / cyclic cohomology / Lie bialgebra
[1] |
Abouzaid M. A topological model for the Fukaya categories of plumbings. J Differential Geom, 2011, 87(1): 1-80
|
[2] |
Bocklandt R, Le Bruyn L. Necklace Lie algebras and noncommutative symplectic geometry. Math Z, 2002, 240: 141-167
CrossRef
Google scholar
|
[3] |
Chas M, Sullivan D. Closed string operators in topology leading to Lie bialgebras and higher string algebra. In: The Legacy of Niels Henrik Abel. Berlin: Springer, 2004, 771-784
CrossRef
Google scholar
|
[4] |
Chen K-T. Iterated path integrals. Bull Amer Math Soc, 1977, 83: 831-879
CrossRef
Google scholar
|
[5] |
Chen X, Eshmatov F, Gan W L. Quantization of the Lie bialgebra of string topology. Comm Math Phys, 2011, 301(1): 37-53
CrossRef
Google scholar
|
[6] |
Costello K. Topological conformal field theories and Calabi-Yau categories. Adv Math, 2007, 210(1): 165-214
CrossRef
Google scholar
|
[7] |
Fukaya K. Morse homotopy, A∞-category, and Floer homologies. In: Kim H J, ed. Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993). Lecture Notes, No 18. Seoul Nat Univ, Seoul, 1993, 1-102
|
[8] |
Fukaya K. Floer homology and mirror symmetry. II. Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999). Adv Stud Pure Math, Vol 34. Tokyo: Math Soc Japan, 2002, 31-127
|
[9] |
Fukaya K. Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J Math, 2010, 50(3): 521-590
CrossRef
Google scholar
|
[10] |
Fukaya K, Oh Y-G, Ohta H, Ono K. Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I and II. AMS/IP Studies in Advanced Mathematics, Vol 46. Providence: Amer Math Soc/Internation Press, 2009
|
[11] |
Fukaya K, Seidel P, Smith I. Exact Lagrangian submanifolds in simply-connected cotangent bundles. Invent Math, 2008, 172(1): 1-27
CrossRef
Google scholar
|
[12] |
Fukaya K, Seidel P, Smith I. The symplectic geometry of cotangent bundles from a categorical viewpoint. In: Homological Mirror Symmetry. Lecture Notes in Phys, Vol 757. Berlin: Springer, 2009, 1-26
CrossRef
Google scholar
|
[13] |
Getzler E, Jones J D S. A∞-algebras and the cyclic bar complex. Illinois J Math, 1989, 34: 256-283
|
[14] |
Getzler E, Jones J D S, Petrack S. Differential forms on loop space and the cyclic bar complex. Topology, 1991, 30: 339-371
CrossRef
Google scholar
|
[15] |
Ginzburg V. Noncommutative symplectic geometry, quiver varieties and operads. Math Res Lett, 2001, 8: 377-400
CrossRef
Google scholar
|
[16] |
Hamilton A. Noncommutative geometry and compactifications of the moduli space of curves. arXiv: 0801.0904
|
[17] |
Jones J D S. Cyclic homology and equivariant homology. Invent Math, 1987, 87: 403-423
CrossRef
Google scholar
|
[18] |
Kontsevich M. Formal (non)commutative symplectic geometry. In: The Gelfand Mathematical Seminars 1990-1992. Boston; Birkhäuser, 1993, 173-187
|
[19] |
Kontsevich M. Feynman diagrams and low-dimensional topology. In: 1-st European Congress of Mathematics, 1992, Paris, Vol II. Progr Math, Vol 120. Basel: Birkhäuser, 1994, 97-121
CrossRef
Google scholar
|
[20] |
Kontsevich M. Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, Zürich 1994, Vol I. Basel: Birkhäuser, 1995, 120-139
|
[21] |
Kontsevich M, Soibelman Y. Notes on A∞ algebras, A∞ categories and noncommutative geometry. In: Homological Mirror Symmetry. Lecture Notes in Phys, Vol 757. Berlin: Springer, 2009, 153-219
CrossRef
Google scholar
|
[22] |
Loday J-L. Cyclic Homology. 2nd ed. Grundlehren Math Wiss, Vol 301. Berlin: Springer-Verlag, 1998
CrossRef
Google scholar
|
[23] |
McDuff D, Salamon D. Introduction to Symplectic Topology. 2nd ed. Oxford Mathematical Monographs. New York: The Clarendon Press, Oxford University Press, 1998
|
[24] |
Nadler D. Microlocal branes are constructible sheaves. Selecta Math (N S), 2009, 15(4): 563-619
CrossRef
Google scholar
|
[25] |
Piunikhin S, Salamon D, Schwarz M. Symplectic Floer-Donaldson theory and quantum cohomology. In: Thomas C B, ed. Contact and Symplectic Geometry. Cambridge: Cambridge Univ Press, 1996, 171-200
|
[26] |
Schedler T. A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver. Int Math Res Not, 2005, 12: 725-760
CrossRef
Google scholar
|
[27] |
Seidel P. Fukaya Categories and Picard-Lefschetz Theory. Zürich Lectures in Advanced Mathematics. Zürich: European Mathematical Society, 2008
CrossRef
Google scholar
|
/
〈 |
|
〉 |