Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance

Peng LUO

PDF(174 KB)
PDF(174 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 123-140. DOI: 10.1007/s11464-015-0433-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance

Author information +
History +

Abstract

We study the uniqueness and existence of solutions of reflected G-stochastic differential equations (RGSDEs) with nonlinear resistance under an integral-Lipschitz condition of coefficients. Moreover, we obtain the comparison theorem for RGSDEs with nonlinear resistance.

Keywords

G-Brownian motion / G-expectation / reflected G-stochastic differential equation (RGSDE) / nonlinear resistance / comparison theorem

Cite this article

Download citation ▾
Peng LUO. Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance. Front. Math. China, 2016, 11(1): 123‒140 https://doi.org/10.1007/s11464-015-0433-7

References

[1]
Bihari I.A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math Hungar, 1956, 7(1): 81–94
CrossRef Google scholar
[2]
Denis L,Hu M,Peng S.Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal, 2011, 34(2):139–161
CrossRef Google scholar
[3]
El Karoui N.Processus de réflexion dans ℝn. In: Meyer P A, ed. Séminaire deprobabilités IX, Université de Strasbourg. Lecture Notes in Math, Vol 465, Berlin:Springer, 1975, 534–554
CrossRef Google scholar
[4]
El Karoui N,Chaleyat-Maurel M.Un probl`eme de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur ℝ, cas continu. In: Exposés duSéminaire J. Azéma-M. Yor. Held at the Université Pierre et Marie Curie (Paris, 1976-1977). Astérisque, 52, 53, Société Math′ematique de France, Paris, 1978, 117–144
[5]
El Karoui N,Kapoudjian C,Pardoux E,Peng S,Quenez M C.Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann Probab, 1997, 25(2):702–737
CrossRef Google scholar
[6]
Gao F.Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2009, 119: 3356–3382
CrossRef Google scholar
[7]
Gegout-Petit A,Pardoux E.Equations différentielles stochastiques rétrogrades refl echiesdans un convexe. Stoch Stoch Rep, 1996, 57: 111–128
CrossRef Google scholar
[8]
Hu Y,Tang S.Multi-dimensional BSDE with oblique reflection and optimal switching.Probab Theory Related Fields, 2010, 147: 89–121
CrossRef Google scholar
[9]
Li X,Peng S.Stopping times and related Itô calculus with G-Brownian motion.Stochastic Process Appl, 2011, 121: 1492–1508
CrossRef Google scholar
[10]
Lin Q.Local time and Tanaka formula for the G-Brownian motion. J Math Anal Appl,2013, 398: 315–334
CrossRef Google scholar
[11]
Lin Q.Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin (Engl Ser), 2013, 29: 923–942
CrossRef Google scholar
[12]
Lin Q.Differentiability of stochastic differential equations driven by G-Brownian motion. Sci China Math, 2013, 56: 1087–1107
CrossRef Google scholar
[13]
Lin Y.Stochastic differential equations driven by G-Brownian motion with reflecting boundary. Electron J Probab, 2013, 18(9): 1–23
CrossRef Google scholar
[14]
Lin Y.Équations différentielles stochastiques sous les espérances mathématiquesnonlinéaire et applications. Ph D Thesis. Université de Rennes 1, 2013,tel.archivesouvertes.fr/tel-00955814
[15]
Lin Y,Bai X.On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients. Acta Math Appl Sin Engl Ser, 2014, 30(3): 589–610
CrossRef Google scholar
[16]
Lions P L,Sznitman A L.Stochastic differential equations with reflecting boundary conditions. Comm Pure Appl Math, 1984, 37: 511–537
CrossRef Google scholar
[17]
Luo P,Jia G.On monotonicity and order-preservation for multi-dimensional G-diffusion processes. Stoch Anal Appl, 2015, 33(1): 67–90
CrossRef Google scholar
[18]
Luo P,Wang F.Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stochastic Process Appl, 2014, 124: 3869–3885
CrossRef Google scholar
[19]
Peng S.Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math Appl Sin Engl Ser, 2004, 20(2): 1–24
CrossRef Google scholar
[20]
Peng S.Nonlinear expectations and nonlinear Markov chains. Chin Ann Math Ser B, 2005, 26(2): 159–184
CrossRef Google scholar
[21]
Peng S.G-expectation, G-Brownian motion and related stochastic calculus of Itô type.In: Stochastic Analysis and Applications, Abel Symp, 2. Berlin: Springer, 2007, 541–567
[22]
Peng S.Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009,52(7): 1391–1411
CrossRef Google scholar
[23]
Peng S.Nolinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1
[24]
Peng S.Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians,Hyderabad, India, 2010
CrossRef Google scholar
[25]
Qian Z,Xu M.Skorohod equation and reflected bacward stochastic differential equations. arXiv: 1103.2078v1
[26]
Ramasubramanian S.Reflected backward stochastic differential equations in an orthant. Proc Indian Acad Sci Math Sci, 2002, 112: 347–360
CrossRef Google scholar
[27]
Skorohod A V.Stochastic equations for diffusion processes in a bounded region. Theo Veroyatnost i Primenen, 1961, 6: 287–298
[28]
Skorohod A V.Stochastic equations for diffusion processes in a bounded region II. Theo Veroyatnost i Primenen, 1962, 7: 5–25
[29]
Stroock D W,Varadhan S R S. Diffusion processes with boundary conditions. CommPure Appl Math, 1971, 24: 147–225
CrossRef Google scholar
[30]
Tanaka H.Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math J, 1979, 9: 163–177
[31]
Yamada T.On the uniqueness of solutions of stochastic differential equations with reflecting barrier conditions. In: Meyer P A, ed. S′eminaire de Probabilité X, Université de Strasbourg. Lecture Notes in Math, Vol 511. Berlin: Springer, 1976,240–244
CrossRef Google scholar
[32]
Zhang B,Xu J,Kannan D.Extension and application of Itô’s formula under G-framework. Stoch Anal Appl, 2010, 28: 322–349
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(174 KB)

Accesses

Citations

Detail

Sections
Recommended

/