Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds

Feng DU , Jing MAO

Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 583 -594.

PDF (139KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 583 -594. DOI: 10.1007/s11464-015-0422-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds

Author information +
History +
PDF (139KB)

Abstract

For a compact Riemannian manifold M immersed into a higher dimensional manifold which can be chosen to be a Euclidean space, a unit sphere, or even a projective space, we successfully give several upper bounds in terms of the norm of the mean curvature vector of M for the first non-zero eigenvalue of the p-Laplacian (1<p<+) on M. This result can be seen as an extension of Reilly’s bound for the first non-zero closed eigenvalue of the Laplace operator.

Keywords

p-Laplacian / eigenvalue / mean curvature vector

Cite this article

Download citation ▾
Feng DU, Jing MAO. Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds. Front. Math. China, 2015, 10(3): 583-594 DOI:10.1007/s11464-015-0422-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao L F, Li H Z. r-Minimal submanifolds in space forms. Ann Global Anal Geom, 2007, 32: 311-341

[2]

Chavel I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984

[3]

Chen B Y. Total Mean Curvature and Submanifolds of Finite Type. Singapore: World Scientific, 1984

[4]

Chen D G, Cheng Q M. Extrinsic estimates for eigenvalues of the Laplace operator. J Math Soc Japan, 2008, 60: 325-339

[5]

Chen D G, Li H Z. The sharp estimates for the first eigenvalue of Paneitz operator in 4-manifold. arXiv: 1010.3102v1

[6]

Grosjean J F. Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pacific J Math, 2002, 206: 93-112

[7]

Mao J. Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel. J Math Pures Appl, 2014, 101(3): 372-393

[8]

Reilly R. On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comm Math Helv, 1977, 52: 525-533

[9]

El Soufi A, Harrell ll E M, Ilias S. Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans Amer Math Soc, 2009, 361: 2337-2350

[10]

Veron L. Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds. Colloquia Mathematica Societatis Janos Bolyai, Vol 62, P D E. Budapest, 1991, 317-352

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (139KB)

1060

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/