Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds

Feng DU, Jing MAO

PDF(139 KB)
PDF(139 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 583-594. DOI: 10.1007/s11464-015-0422-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds

Author information +
History +

Abstract

For a compact Riemannian manifold M immersed into a higher dimensional manifold which can be chosen to be a Euclidean space, a unit sphere, or even a projective space, we successfully give several upper bounds in terms of the norm of the mean curvature vector of M for the first non-zero eigenvalue of the p-Laplacian (1<p<+) on M. This result can be seen as an extension of Reilly’s bound for the first non-zero closed eigenvalue of the Laplace operator.

Keywords

p-Laplacian / eigenvalue / mean curvature vector

Cite this article

Download citation ▾
Feng DU, Jing MAO. Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds. Front. Math. China, 2015, 10(3): 583‒594 https://doi.org/10.1007/s11464-015-0422-x

References

[1]
Cao L F, Li H Z. r-Minimal submanifolds in space forms. Ann Global Anal Geom, 2007, 32: 311-341
CrossRef Google scholar
[2]
Chavel I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984
[3]
Chen B Y. Total Mean Curvature and Submanifolds of Finite Type. Singapore: World Scientific, 1984
CrossRef Google scholar
[4]
Chen D G, Cheng Q M. Extrinsic estimates for eigenvalues of the Laplace operator. J Math Soc Japan, 2008, 60: 325-339
CrossRef Google scholar
[5]
Chen D G, Li H Z. The sharp estimates for the first eigenvalue of Paneitz operator in 4-manifold. arXiv: 1010.3102v1
[6]
Grosjean J F. Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pacific J Math, 2002, 206: 93-112
CrossRef Google scholar
[7]
Mao J. Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel. J Math Pures Appl, 2014, 101(3): 372-393
CrossRef Google scholar
[8]
Reilly R. On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comm Math Helv, 1977, 52: 525-533
CrossRef Google scholar
[9]
El Soufi A, Harrell ll E M, Ilias S. Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans Amer Math Soc, 2009, 361: 2337-2350
CrossRef Google scholar
[10]
Veron L. Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds. Colloquia Mathematica Societatis Janos Bolyai, Vol 62, P D E. Budapest, 1991, 317-352

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(139 KB)

Accesses

Citations

Detail

Sections
Recommended

/