Perturbations of Drazin invertible operators

Kaifan YANG, Hongke DU

PDF(122 KB)
PDF(122 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 199-208. DOI: 10.1007/s11464-014-0436-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Perturbations of Drazin invertible operators

Author information +
History +

Abstract

The necessary and sufficient conditions for the small norm perturbation of a Drazin invertible operator to be still Drazin invertible and the sufficient conditions for the finite rank perturbation of a Drazin invertible operator to be still Drazin invertible are established.

Keywords

Drazin inverse / small norm perturbation / finite rank perturbation

Cite this article

Download citation ▾
Kaifan YANG, Hongke DU. Perturbations of Drazin invertible operators. Front. Math. China, 2015, 10(1): 199‒208 https://doi.org/10.1007/s11464-014-0436-9

References

[1]
Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: Wiley-Interscience, 1974
[2]
Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. New York: Dover, 1991
[3]
Castro-González N. Additive perturbation results for the Drazin inverse. Linear Algebra Appl, 2005, 397: 279-297
CrossRef Google scholar
[4]
Castro-González N, Vélez-Cerrada J. Characterizations of matrices which eigenprojections at zero are equal to a fixed perturbation. Appl Math Comput, 2004, 159: 613-623
CrossRef Google scholar
[5]
Castro-González N, Koliha J J. Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory, 2000, 36: 92-106
CrossRef Google scholar
[6]
Castro-González N, Koliha J J, Wei Yimin. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl, 2000, 312: 181-189
CrossRef Google scholar
[7]
Conway J B. A Course in Functional Analysis. 2nd ed. Berlin: Springer-Verlag, 1990
[8]
Diao H. Structured perturbations of Drazin inverse. Appl Math Comput, 2004, 158: 419-432
CrossRef Google scholar
[9]
Du Hong Ke, Deng Chun Yuan. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407: 117-124
CrossRef Google scholar
[10]
Hartwig R E, Wang G, Wei Y. Some additive results on Drazin inverses. Linear Algebra Appl, 2001, 322: 207-217
CrossRef Google scholar
[11]
Li X, Wei Y. A note on the perturbation bound of the Drazin inverse. Appl Math Comput, 2003, 140: 329-340
CrossRef Google scholar
[12]
Taylar A E, Lay D C. Introduction to Functional Analysis. 2nd ed. New York: John Wiley & Sons, 1980
[13]
Wei Y. Perturbation bound of the Drazin inverse. Appl Math Comput, 2002, 125: 231-244
CrossRef Google scholar
[14]
Wei Y. The Drazin inverse of updating of a square matrix with application to perturbation formula. Appl Math Comput, 2000, 108: 77-83
CrossRef Google scholar
[15]
Wei Y, Qiao S. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl Math Comput, 2003, 138: 77-89
CrossRef Google scholar
[16]
Wei Y, Wang G. The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl, 1997, 258: 179-186
CrossRef Google scholar
[17]
Wei Y, Wu H. The Perturbation of the Drazin inverse and oblique projection. Appl Math Lett, 2000, 13: 77-83
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(122 KB)

Accesses

Citations

Detail

Sections
Recommended

/