Restricted parameter range promise set cover problems are easy

Hao CHEN

PDF(112 KB)
PDF(112 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1253-1260. DOI: 10.1007/s11464-014-0429-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Restricted parameter range promise set cover problems are easy

Author information +
History +

Abstract

The restricted parameter range set cover problem is a weak form of the NP-hard set cover problem with the restricted range of parameters. We give a polynomial time algorithm for this problem by lattices.

Keywords

Set cover problem / lattice / closest vector problem (CVP) / shortest vector problem (SVP)

Cite this article

Download citation ▾
Hao CHEN. Restricted parameter range promise set cover problems are easy. Front. Math. China, 2014, 9(6): 1253‒1260 https://doi.org/10.1007/s11464-014-0429-8

References

[1]
Ajtai M. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract). In: Proc STOC 1998. 1998, 10−19
[2]
Arora S, Babai L, Stern J, Sweedyk Z. The hardness of approximating optima in lattices, codes and systems of linear equations. J Comput System Sci, 1997, 54(2): 317−331
CrossRef Google scholar
[3]
Bansal N, Khot S. Inapproximability of hypergraph vertex cover and applications to scheduling problems. Preprint, 2009
[4]
Bellare M, Goldwasser S, Lund C, Russell A. Efficient multi-prover interactive proofs with applications to approximation problems. In: Proc STOC 1993. 1993, 113−131
[5]
Chvatal V. A greedy heuristic for the set-covering problem. Math Oper Res, 1979, 4: 233−235
CrossRef Google scholar
[6]
Dinur I, Guruswami V, Khot S, Regev O. A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J Comput, 2005, 34(5): 1129−1146
CrossRef Google scholar
[7]
Dinur I, Kindler G, Raz R, Safra S. An improved lower bound for approximating CVP. Combinatorica, 2003, 23(2): 205−243
CrossRef Google scholar
[8]
Dumer I, Micciancio D, Sudan M. Hardness of approximating the minimum distance of a linear code. IEEE Trans Inform Theory, 2003, 49(1): 22−37
CrossRef Google scholar
[9]
Feige U. A threshold of ln n for approximating set cover. J ACM, 1998, 45(4): 634−652
CrossRef Google scholar
[10]
Haviv I, Regev O. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proc STOC 2007. 2007, 469−477
[11]
Hochbaum D. Approximation algorithms for set covering and vertex cover problems. SIAM J Comput, 1982, 11: 555−556
CrossRef Google scholar
[12]
Johnson D S. Approximation algorithms for combinatorial problems. J Comput System Sci, 1974, 9: 256−278
CrossRef Google scholar
[13]
Khot S. Hardness of approximating the shortest vector problem in lattices. J ACM, 2005, 52(5): 789−808
CrossRef Google scholar
[14]
Khot S, Regev O. Vertex cover might be hard to approximate to within 2−ε. In: Proc 18th IEEE Annual Conference on Computational Complexity. Los Alamitos: IEEE Computer Society Press, 2003, 379−386
[15]
Lovasz L. On the ratio of optimal integral and fractional covers. Discrete Math, 1975, 13: 383−390
CrossRef Google scholar
[16]
Lund C, Yannakakis M. Hardness of approximating minimization problem. J ACM, 1994, 41(5): 960−981
CrossRef Google scholar
[17]
Micciancio D. The shortest vector problem is NP-hard to approximate within some constant. SIAM J Comput, 2001, 30(6): 2008−2035
CrossRef Google scholar
[18]
Micciancio D, Goldwasser S. Complexity of Lattice Problems: A Cryptographic Perspective. Dordrecht: Kluwer Academic Publishers, 2002
CrossRef Google scholar
[19]
Raz R, Safra S. A sub-constant error-probability low degree test and a sub-constant error-probability PCP characteristic of NP. In: Proc STOC 1997. 1997, 475−484
[20]
Trevisan L. Non-approximability results for optimization problems on bounded degree instances. In: Proc STOC 2001. 2001, 453−461

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(112 KB)

Accesses

Citations

Detail

Sections
Recommended

/