Transitivity of varietal hypercube networks

Li XIAO, Jin CAO, Jun-Ming XU

PDF(107 KB)
PDF(107 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1401-1410. DOI: 10.1007/s11464-014-0427-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Transitivity of varietal hypercube networks

Author information +
History +

Abstract

The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.

Keywords

Combinatorics / graph / transitivity / varietal hypercube network

Cite this article

Download citation ▾
Li XIAO, Jin CAO, Jun-Ming XU. Transitivity of varietal hypercube networks. Front. Math. China, 2014, 9(6): 1401‒1410 https://doi.org/10.1007/s11464-014-0427-x

References

[1]
Cao J, Xiao L, Xu J-M. Cycles and paths embedded in varietal hypercubes. J Univ Sci Technol China, 2014, 44(9): 782-789
[2]
Cheng S-Y, Chuang J-H. Varietal hypercube—a new interconnection networks topology for large scale multicomputer. Proc Internat Conf Parallel Distributed Systems, 1994: 703-708
[3]
Huang J, Xu J-M. Multiply-twisted hypercube with four or less dimensions is vertextransitive. Chinese Quart J Math, 2005, 20(4): 430-434
[4]
Jiang M, Hu X-Y, Li Q-L. Fault-tolerant diameter and width diameter of varietal hypercubes. Appl Math J Chinese Univ Ser A, 2010, 25(3): 372-378 (in Chinese)
[5]
Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five or more dimensions is not vertex-transitive. Inform Process Lett, 1995, 53: 33-36
CrossRef Google scholar
[6]
Ma M-J, Xu J-M. Algebraic properties and panconnectivity of folded hypercubes. Ars Combinatoria, 2010, 95: 179-186
[7]
Wang J-W, Xu J-M. Reliability analysis of varietal hypercube networks. J Univ Sci Technol China, 2009, 39(12): 1248-1252
[8]
Xu J-M. Theory and Application of Graphs. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003
CrossRef Google scholar
[9]
Xu J-M. Combinatorial Theory in Networks. Beijing: Science Press, 2013

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(107 KB)

Accesses

Citations

Detail

Sections
Recommended

/