Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces

Wenjuan LI , Qingying XUE

Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1325 -1347.

PDF (206KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1325 -1347. DOI: 10.1007/s11464-014-0420-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces

Author information +
History +
PDF (206KB)

Abstract

Similar to the property of a linear Calderón-Zygmund operator, a linear fractional type operator Iα associated with a BMO function b fails to satisfy the continuity from the Hardy space Hp into Lp for p≤1. Thus, an alternative result was given by Y. Ding, S. Lu and P. Zhang, they proved that [b, Iα] is continuous from an atomic Hardy space Hbp into Lp,where <?Pub Caret?>Hbp is a subspace of the Hardy space Hp for n/(n+1)<p≤1. In this paper, we study the commutators of multilinear fractional type operators on product of certain Hardy spaces. The endpoint (Hb1p1××Hbmpm, Lp) boundedness for multilinear fractional type operators is obtained. We also give the boundedness for the commutators of multilinear Calderón-Zygmund operators and multilinear fractional type operators on product of certain Hardy spaces when b(Lipβ)m(n).

Keywords

Multilinear fractional type operator / multilinar Calderón-Zygmund operator / commutator / Hardy type space

Cite this article

Download citation ▾
Wenjuan LI, Qingying XUE. Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces. Front. Math. China, 2014, 9(6): 1325-1347 DOI:10.1007/s11464-014-0420-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42(4): 765-778

[2]

Alvarez J. Continuity properties for linear commutators of Calderon-Zygmund operators. Collect Math, 1998, 48: 1037-1055

[3]

Chen X, Xue Q. Weighted estimates for a class of multilinear fractional type operators. J Math Anal Appl, 2010, 362(2): 355-373

[4]

Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51-80

[5]

Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315-331

[6]

Coifman R R, Meyer Y. Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann Inst Fourier (Grenoble), 1978, 28(3): 177-202

[7]

Ding Y, Lu S. Hardy spaces estimate for a class of multilinear homogeneous operators. Sci China Ser A, 1999, 42(12): 1270-1278

[8]

Ding Y, Lu S. Hardy spaces estimates for multilinear operators with homogeneous kernels. Nagoya Math J, 2003, 170: 117-133

[9]

Ding Y, Lu S, Zhang P. Weak estimates for commutators of fractional integral operators. Sci China Ser A, 2001, 44(7): 877-888

[10]

Ding Y, Lu S, Zhang P. Continuity of higher order commutators on certain Hardy spaces. Acta Math Sin (Engl Ser), 2002, 18(2): 391-404

[11]

Grafakos L. On multilinear fractional integrals. Studia Math, 1992, 102: 49-56

[12]

Grafakos L, Kalton N. Multilinear Calderón-Zygmund operators on Hardy spaces. Collect Math, 2001, 52(2): 169-179

[13]

Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165(1): 124-164

[14]

Kenig C E, Stein E M. Multilinear estimates and fractional integration. Math Res Lett, 1999, (6): 1-15

[15]

Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220(4): 1222-1264

[16]

Li W, Xue Q. Continuity property for the commutators of multilinear Calderón-Zygmund operators. Forum Math, 2013, 25: 771-785

[17]

Lin Y, Lu S. Boundedness of multilinear singular integral operators on Hardy and Herz-Hardy spaces. Hokkaido Math J, 2007, 36(3): 585-613

[18]

Lu S, Wu Q, Yang D. Boundedness of commutators on Hardy type spaces. Sci China Ser A, 2002, 45(8): 984-997

[19]

Moen K. Weighted inequalities for multilinear fractional integral operators. Collect Math, 2009, 60: 213-238

[20]

Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integral. Trans Amer Math Soc, 1974, 192: 261-274

[21]

Paluszyński M. Characterization of Lipschitz sSpaces via Commutator of Coifman, Rochberg and Weiss; A Multiplier Theorem for the Semigroup of Contractions. Ph D Thesis. Washington Univ, 1992

[22]

Pérez C. Endpoint estimates for commutators of singular integral operators. J Funct Anal, 1995, 128(1): 163-185

[23]

Welland G V. Weighted norm inequalities for fractional integral. Proc Amer Math Soc, 1975, 51(1): 143-148

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (206KB)

809

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/