Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces

Wenjuan LI, Qingying XUE

PDF(206 KB)
PDF(206 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1325-1347. DOI: 10.1007/s11464-014-0420-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces

Author information +
History +

Abstract

Similar to the property of a linear Calderón-Zygmund operator, a linear fractional type operator Iα associated with a BMO function b fails to satisfy the continuity from the Hardy space Hp into Lp for p≤1. Thus, an alternative result was given by Y. Ding, S. Lu and P. Zhang, they proved that [b, Iα] is continuous from an atomic Hardy space Hbp into Lp,where <?Pub Caret?>Hbp is a subspace of the Hardy space Hp for n/(n+1)<p≤1. In this paper, we study the commutators of multilinear fractional type operators on product of certain Hardy spaces. The endpoint (Hb1p1××Hbmpm, Lp) boundedness for multilinear fractional type operators is obtained. We also give the boundedness for the commutators of multilinear Calderón-Zygmund operators and multilinear fractional type operators on product of certain Hardy spaces when b(Lipβ)m(n).

Keywords

Multilinear fractional type operator / multilinar Calderón-Zygmund operator / commutator / Hardy type space

Cite this article

Download citation ▾
Wenjuan LI, Qingying XUE. Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces. Front. Math. China, 2014, 9(6): 1325‒1347 https://doi.org/10.1007/s11464-014-0420-4

References

[1]
Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42(4): 765-778
CrossRef Google scholar
[2]
Alvarez J. Continuity properties for linear commutators of Calderon-Zygmund operators. Collect Math, 1998, 48: 1037-1055
[3]
Chen X, Xue Q. Weighted estimates for a class of multilinear fractional type operators. J Math Anal Appl, 2010, 362(2): 355-373
CrossRef Google scholar
[4]
Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51-80
CrossRef Google scholar
[5]
Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315-331
CrossRef Google scholar
[6]
Coifman R R, Meyer Y. Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann Inst Fourier (Grenoble), 1978, 28(3): 177-202
CrossRef Google scholar
[7]
Ding Y, Lu S. Hardy spaces estimate for a class of multilinear homogeneous operators. Sci China Ser A, 1999, 42(12): 1270-1278
CrossRef Google scholar
[8]
Ding Y, Lu S. Hardy spaces estimates for multilinear operators with homogeneous kernels. Nagoya Math J, 2003, 170: 117-133
[9]
Ding Y, Lu S, Zhang P. Weak estimates for commutators of fractional integral operators. Sci China Ser A, 2001, 44(7): 877-888
CrossRef Google scholar
[10]
Ding Y, Lu S, Zhang P. Continuity of higher order commutators on certain Hardy spaces. Acta Math Sin (Engl Ser), 2002, 18(2): 391-404
CrossRef Google scholar
[11]
Grafakos L. On multilinear fractional integrals. Studia Math, 1992, 102: 49-56
[12]
Grafakos L, Kalton N. Multilinear Calderón-Zygmund operators on Hardy spaces. Collect Math, 2001, 52(2): 169-179
[13]
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165(1): 124-164
CrossRef Google scholar
[14]
Kenig C E, Stein E M. Multilinear estimates and fractional integration. Math Res Lett, 1999, (6): 1-15
[15]
Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220(4): 1222-1264
CrossRef Google scholar
[16]
Li W, Xue Q. Continuity property for the commutators of multilinear Calderón-Zygmund operators. Forum Math, 2013, 25: 771-785
[17]
Lin Y, Lu S. Boundedness of multilinear singular integral operators on Hardy and Herz-Hardy spaces. Hokkaido Math J, 2007, 36(3): 585-613
CrossRef Google scholar
[18]
Lu S, Wu Q, Yang D. Boundedness of commutators on Hardy type spaces. Sci China Ser A, 2002, 45(8): 984-997
CrossRef Google scholar
[19]
Moen K. Weighted inequalities for multilinear fractional integral operators. Collect Math, 2009, 60: 213-238
CrossRef Google scholar
[20]
Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integral. Trans Amer Math Soc, 1974, 192: 261-274
CrossRef Google scholar
[21]
Paluszyński M. Characterization of Lipschitz sSpaces via Commutator of Coifman, Rochberg and Weiss; A Multiplier Theorem for the Semigroup of Contractions. Ph D Thesis. Washington Univ, 1992
[22]
Pérez C. Endpoint estimates for commutators of singular integral operators. J Funct Anal, 1995, 128(1): 163-185
CrossRef Google scholar
[23]
Welland G V. Weighted norm inequalities for fractional integral. Proc Amer Math Soc, 1975, 51(1): 143-148
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(206 KB)

Accesses

Citations

Detail

Sections
Recommended

/