Decay properties of Markovian bulk-arrival and bulk-service queues with state-independent control

Lina ZHANG, Junping LI

PDF(169 KB)
PDF(169 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (4) : 983-1000. DOI: 10.1007/s11464-014-0411-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Decay properties of Markovian bulk-arrival and bulk-service queues with state-independent control

Author information +
History +

Abstract

We consider decay properties regarding decay parameter and invariant measures of Markovian bulk-arrival and bulk-service queues with state-independent control. The exact value of the decay parameter, denoted by λZ, is firstly revealed. A criterion regarding λZ-recurrence and λZ-positive is obtained. The corresponding λZ-subinvariant/invariant measures and λZ-subinvariant/invariant vectors are then presented.

Keywords

Decay parameter / bulk-arrival and bulk-service queues / invariant measures / invariant vectors / λC-invariant measures / λC-invariant vectors / stateindependent control

Cite this article

Download citation ▾
Lina ZHANG, Junping LI. Decay properties of Markovian bulk-arrival and bulk-service queues with state-independent control. Front. Math. China, 2014, 9(4): 983‒1000 https://doi.org/10.1007/s11464-014-0411-5

References

[1]
Anderson W. Continuous-Time Markov Chains: An Applications-Oriented Approach. New York: Springer-Verlag, 1991
CrossRef Google scholar
[2]
Chen Anyue, Li Junping, Hou Zhenting, Wang Ng Kai. Decay properties and quasistationary distributions for stopped Markovian bulk-arrival and bulk-service queues. Queueing Syst, 2010, 66: 275-311
CrossRef Google scholar
[3]
Chen Anyue, Li Junping, Ramesh N I. Uniqueness and extinction of weighted Markov branching processes. Methodol Comput Appl Probab, 2005, 7: 489-516
CrossRef Google scholar
[4]
Chen Anyue, Pollett P K, Junping Li, Hanjun Zhang. Markovian bulk-arrival and bulk-service queues with state-dependent control. Queueing Syst, 2010, 64: 267-304
CrossRef Google scholar
[5]
Kelly F P. Invariant measures and the generator. In: Kingman J F C, Reuter G E, eds. Probability, Statistics and Analysis. Lond Math Soc Lecture Notes Series 79. Cambridge: Cambridge University Press, 1983, 143-160
[6]
Kingman J F C. The exponential decay of Markov transition probability. Proc Lond Math Soc, 1963, 13: 337-358
CrossRef Google scholar
[7]
Li Junping, Chen Anyue. The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time. Methodol Comput Appl Probab, 2013, 15: 467-484
CrossRef Google scholar
[8]
Nair M G, Pollett P K. On the relationship between μ-invariant measures and quasistationary distributions for continuous-time Markov chains. Adv Appl Probab, 1993, 25: 82-102
CrossRef Google scholar
[9]
Pollett P K. The determination of quasi-instationary distribution directly from the transition rates of an absorbing Markov chain. Math Comput Modelling, 1995, 22: 279-287
CrossRef Google scholar
[10]
Pollett P K. Quasi-stationary distributions for continuous time Markov chains when absorption is not certain. J Appl Prob, 1999, 36: 268-272
CrossRef Google scholar
[11]
Van Doorn E A. Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv Appl Prob, 1991, 23: 683-700
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(169 KB)

Accesses

Citations

Detail

Sections
Recommended

/