Limiting process of absorbing Markov chains

Jinwen CHEN

Front. Math. China ›› 2014, Vol. 9 ›› Issue (4) : 753 -759.

PDF (105KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (4) : 753 -759. DOI: 10.1007/s11464-014-0400-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Limiting process of absorbing Markov chains

Author information +
History +
PDF (105KB)

Abstract

We outline an approach to investigate the limiting law of an absorbing Markov chain conditional on having not been absorbed for long time. The main idea is to employ Donsker-Varadhan’s entropy functional which is typically used as the large deviation rate function for Markov processes. This approach provides an interpretation for a certain quasi-ergodicity

Keywords

Absorbing Markov chain / large deviation / principal eigenvalue / quasi-stationary distribution / decay parameter

Cite this article

Download citation ▾
Jinwen CHEN. Limiting process of absorbing Markov chains. Front. Math. China, 2014, 9(4): 753-759 DOI:10.1007/s11464-014-0400-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson W J. Continuous-Time Markov Chains. An Applications-Oriented Approach. Berlin: Springer-Verlag, 1991

[2]

Bolthausen E, Schmock U. On the maximum entropy principle for uniformly ergodic Markov chains. Stochastic Process Appl, 1989, 33(1): 1-27

[3]

Chen J W, Deng X X. Large deviations and related problems for absorbing Markov chains. Stochastic Process Appl, 2013, 123: 2398-2418

[4]

Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (I). Comm Pure Appl Math, 1975, 28: 1-47

[5]

Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (II). Comm Pure Appl Math, 1975, 28: 279-301

[6]

Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (III). Comm Pure Appl Math, 1976, 29: 389-461

[7]

Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (IV). Comm Pure Appl Math, 1983, 36: 183-212

[8]

Flaspohler D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann Inst Statist Math, 1973, 26: 351-356

[9]

Kingman J F C. The exponential decay of Markov transition probabilities. Proc Lond Math Soc (3), 1963, XIII: 337-358

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (105KB)

851

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/