Algorithms for enumeration problem of linear congruence modulo m as sum of restricted partition numbers

Tian-Xiao HE , Peter J. -S. SHIUE

Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 69 -89.

PDF (157KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 69 -89. DOI: 10.1007/s11464-014-0394-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Algorithms for enumeration problem of linear congruence modulo m as sum of restricted partition numbers

Author information +
History +
PDF (157KB)

Abstract

We consider the congruence x 1 + x 2 + + x rc (mod m), where m and r are positive integers and c m : { 0 , 1 , , m 1 } ( m 2 ). Recently, W. -S. Chou, T. X. He, and Peter J. -S. Shiue considered the enumeration problems of this congruence, namely, the number of solutions with the restriction x 1 x 2 x r, and got some properties and a neat formula of the solutions. Due to the lack of a simple computational method for calculating the number of the solution of the congruence, we provide an algebraic and a recursive algorithms for those numbers. The former one can also give a new and simple approach to derive some properties of solution numbers.

Keywords

Congruence / multiset congruence solution / restricted integer partition

Cite this article

Download citation ▾
Tian-Xiao HE, Peter J. -S. SHIUE. Algorithms for enumeration problem of linear congruence modulo m as sum of restricted partition numbers. Front. Math. China, 2015, 10(1): 69-89 DOI:10.1007/s11464-014-0394-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews G E. The Theory of Partitions. EncycloMath Appls, Vol 2. London: Addison-Wesley, 1976

[2]

Cameron P J. Combinatorics: Topics, Techniques, Algorithms. Cambridge: Cambridge University Press, 1994

[3]

Chou W-S, He T X, Shiue P J-S. Enumeration problems for a linear congruence modulo m.Taiwanese J Math, 2014, 18(1): 265–275

[4]

Fine N J. Binomial coefficients modulo a prime. Amer Math Monthly, 1947, 54: 589–592

[5]

Guy R K. Parker’s permutation problem involves the Catalan numbers. Amer Math Monthly, 1993, 100(March): 287–289

[6]

Opdyke J D. A unified approach to algorithms generating unrestricted and restricted integer compositions and integer partitions. J Math Model Algorithms, 2010, 9: 53–97

[7]

Rademacher H. Topics in Analytic Number Theory. Grundlehren der mathematischen Wissenschaften, 169. New York-Heidelberg: Springer-Verlag, 1973

[8]

Sanchis L A, Squire M B. Parallel algorithms for counting and randomly generating integer partitions. J Paral Distrib Comput, 1996, 34: 29–35

[9]

Stanley R P. Enumerative Combinatorics, Vol 2. Cambridge Stud Adv Math, Vol 62. Cambridge: Cambridge Univ Press, 1998

[10]

Stanley R P. Catalan Addendum.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (157KB)

874

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/