Super-simple (5, 4)-GDDs of group type gu
Guangzhou CHEN , Kejun CHEN , Yong ZHANG
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1001 -1018.
Super-simple (5, 4)-GDDs of group type gu
In statistical planning of experiments, super-simple designs are the ones providing samples with maximum intersection as small as possible. Super-simple group divisible designs are useful in constructing other types of super-simple designs which can be applied to codes and designs. In this article, the existence of a super-simple (5, 4)-GDD of group type gu is investigated and it is shown that such a design exists if and only if u≥5, g(u - 2)≥12, and u(u - 1)g2 ≡ 0 (mod 5) with some possible exceptions.
Super-simple design / group divisible design (GDD) / balanced incomplete block design / orthogonal array / completely reducible
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |