Super-simple (5, 4)-GDDs of group type gu

Guangzhou CHEN , Kejun CHEN , Yong ZHANG

Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1001 -1018.

PDF (179KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1001 -1018. DOI: 10.1007/s11464-014-0393-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Super-simple (5, 4)-GDDs of group type gu

Author information +
History +
PDF (179KB)

Abstract

In statistical planning of experiments, super-simple designs are the ones providing samples with maximum intersection as small as possible. Super-simple group divisible designs are useful in constructing other types of super-simple designs which can be applied to codes and designs. In this article, the existence of a super-simple (5, 4)-GDD of group type gu is investigated and it is shown that such a design exists if and only if u≥5, g(u - 2)≥12, and u(u - 1)g2 ≡ 0 (mod 5) with some possible exceptions.

Keywords

Super-simple design / group divisible design (GDD) / balanced incomplete block design / orthogonal array / completely reducible

Cite this article

Download citation ▾
Guangzhou CHEN, Kejun CHEN, Yong ZHANG. Super-simple (5, 4)-GDDs of group type gu. Front. Math. China, 2014, 9(5): 1001-1018 DOI:10.1007/s11464-014-0393-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abel R J R, Bennett F E. Super-simple Steiner pentagon systems. Discrete Math, 2008, 156(5): 780-793

[2]

Abel R J R, Bennett F E, Ge G. Super-simple holey Steiner pentagon systems and related designs. J Combi<?Pub Caret?>n Des, 2008, 16(4): 301-328

[3]

Adams P, Bryant D, Khodkar A. On the existence of super-simple designs with block size 4. Aequationes Math, 1996, 52: 230-246

[4]

Alderson T L, Mellinger K E. 2-dimensional optical orthogonal codes from singer groups. Discrete Appl Math, 2009, 157(14): 3008-3019

[5]

Bluskov I. New designs. J Combin Math Combin Comput, 1997, 23: 212-220

[6]

Bluskov I, Hämäläinen H. New upper bounds on the minimum size of covering designs. J Combin Des, 1998, 6(1): 21-41

[7]

Bush K A. Orthogonal arrays of index unity. Ann Math Stat, 1952, 23: 426-434

[8]

Cao H, Chen K, Wei R. Super-simple balanced incomplete block designs with block size 4 and index 5. Discrete Math, 2009, 309(9): 2808-2814

[9]

Cao H, Yan F. Super-simple group divisible designs with block size 4 and index 5. Discrete Math, 2009, 309(16): 5111-5119

[10]

Cao H, Yan F. Super-simple group divisible designs with block size 4 and index 3, 4, 6. J Statist Plann Inference, 2010, 140(5): 1330-1345

[11]

Cao H, Yan F, Wei R. Super-simple group divisible designs with block size 4 and index 2. J Statist Plann Inference, 2010, 140(9): 2497-2503

[12]

Chen K. On the existence of super-simple (v, 4, 3)-BIBDs. J Combin Math Combin Comput, 1995, 17: 149-159

[13]

Chen K. On the existence of super-simple (v, 4, 4)-BIBDs. J Statist Plann Inference, 1996, 51(3): 339-350

[14]

Chen K, Cao Z, Wei R. Super-simple balanced incomplete block designs with block size 4 and index 6. J Statist Plann Inference, 2005, 133(2): 537-554

[15]

Chen K, Chen G, Li W, Wei R. Super-simple balanced incomplete block designs with block size 5 and index 3. Discrete Appl Math, 2013, 161: 2396-2404

[16]

Chen K, Sun Y G, Zhang Y. Super-simple balanced incomplete block designs with block size 4 and index 8. Util Math, 2013, 91: 213-229

[17]

Chen K, Wei R. Super-simple (v, 5, 5) designs. Des Codes Cryptogr, 2006, 39: 173-187

[18]

Chen K, Wei R. Super-simple (v, 5, 4) designs. Discrete Appl Math, 2007, 155(8): 904-913

[19]

Chen K, Wei R. On super-simple cyclic 2-designs. Ars Combin, 2012, 103: 257-277

[20]

Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: design, analysis and applications. IEEE Trans Inform Theory, 1989, 35: 595-604

[21]

Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2007

[22]

Gronau H-D O F, Kreher D L, Ling A C H. Super-simple (v, 5, 2) designs. Discrete Appl Math, 2004, 138: 65-77

[23]

Gronau H-D O F, Mullin R C. On super-simple 2-(v, 4, λ) designs. J Combin Math Combin Comput, 1992, 11: 113-121

[24]

Hartmann S. On simple and super-simple transversal designs. J Combin Des, 2000, 8(5): 311-320

[25]

Hartmann S. Superpure digraph designs. J Combin Des, 2000, 10(4): 239-255

[26]

Ji L, Yin J. Constructions of new orthogonal arrays and covering arrays of strength three. J Combin Theory Ser A, 2010, 117: 236-247

[27]

Julian R, Abel R J R. Existence of five MOLS of orders 18 and 60. J Combin Des,

[28]

Khodkar A. Various super-simple designs with block size four. Australas J Combin1994, 9: 201-210

[29]

Kim H K, Lebedev V. On optimal superimposed codes. J Combin Des, 2004, 12(2): 79-91

[30]

Ling A C H, Zhu X J, Colbourn C J, Mullin R C. Pairwise balanced designs with consecutive block sizes. Des Codes Cryptogr, 1997, 10: 203-222

[31]

Stinson D R, Wei R, Zhu L. New constructions for perfect hash families and related structures using related combinatorial designs and codes. J Combin Des, 2000, 8(3): 189-200

[32]

Todorov D T. Four mutually orthogonal Latin squares of order 14. J Combin Designs, 2012, 20(8): 363-367

[33]

Zhang Y, Chen K. Super-simple group divisible designs with block size 4 and index 9. J Statist Plann Inference, 2011, 141(9): 3231-3243

[34]

Zhang Y, Chen K, Sun Y. Super-simple balanced incomplete block designs with block size 4 and index 9. J Statist Plann Inference, 2009, 139(10): 3612-3624

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (179KB)

1097

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/