Combinatorial principles between R R T 2 2 and R T 2 2

Xiaojun KANG

Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1309 -1323.

PDF (154KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1309 -1323. DOI: 10.1007/s11464-014-0390-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Combinatorial principles between R R T 2 2 and R T 2 2

Author information +
History +
PDF (154KB)

Abstract

We study the strength of some combinatorial principles weaker than Ramsey theorem for pairs over RCA0. First, we prove that Rainbow Ramsey theorem for pairs does not imply Thin Set theorem for pairs. Furthermore, we get some other related results on reverse mathematics using the same method. For instance, Rainbow Ramsey theorem for pairs is strictly weaker than Erdös-Moser theorem under RCA0.

Keywords

Reverse mathematics / thin set / free set / Erdös-Moser theorem / Rainbow Ramsey theorem

Cite this article

Download citation ▾
Xiaojun KANG. Combinatorial principles between R R T 2 2 and R T 2 2. Front. Math. China, 2014, 9(6): 1309-1323 DOI:10.1007/s11464-014-0390-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bovykin A, Weiermann A. The strength of infinitary Ramseyan principles can be accessed by their densities. Ann Pure Appl Logic (to appear) , 2005

[2]

Cholak P A, Giusto M, Hirst J L, Jockush C G Jr. Free sets and reverse mathematics. In: Reverse Mathematics 2001. Lect Notes Log, Vol 21. La Jolla: Assoc Symbol Logic, 2005, 104−119

[3]

Csima B, Mileti J. The strength of the rainbow Ramsey theorem. J Symbolic Logic, 2009, 74(4): 1310−1324

[4]

Liu Jiayi. R T 2 2 does not imply WKL0.J Symbolic Logic, 2012, 77(2): 609−620

[5]

Nies A. Computability and Randomness. Oxford Logic Guides. Oxford: Oxford University Press, 2010

[6]

Simpson S G. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Berlin: Springer-Verlag, 1999

[7]

Soare R I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Heidelberg: Springer-Verlag, 1987

[8]

Wang Wei. Cohesive sets and rainbows. Ann Pure Appl Logic, 2014, 165(2): 389−408

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (154KB)

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/