Combinatorial principles between R R T 2 2 and R T 2 2

Xiaojun KANG

PDF(154 KB)
PDF(154 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1309-1323. DOI: 10.1007/s11464-014-0390-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Combinatorial principles between R R T 2 2 and R T 2 2

Author information +
History +

Abstract

We study the strength of some combinatorial principles weaker than Ramsey theorem for pairs over RCA0. First, we prove that Rainbow Ramsey theorem for pairs does not imply Thin Set theorem for pairs. Furthermore, we get some other related results on reverse mathematics using the same method. For instance, Rainbow Ramsey theorem for pairs is strictly weaker than Erdös-Moser theorem under RCA0.

Keywords

Reverse mathematics / thin set / free set / Erdös-Moser theorem / Rainbow Ramsey theorem

Cite this article

Download citation ▾
Xiaojun KANG. Combinatorial principles between R R T 2 2 and R T 2 2. Front. Math. China, 2014, 9(6): 1309‒1323 https://doi.org/10.1007/s11464-014-0390-6

References

[1]
Bovykin A, Weiermann A. The strength of infinitary Ramseyan principles can be accessed by their densities. Ann Pure Appl Logic (to appear) , 2005
[2]
Cholak P A, Giusto M, Hirst J L, Jockush C G Jr. Free sets and reverse mathematics. In: Reverse Mathematics 2001. Lect Notes Log, Vol 21. La Jolla: Assoc Symbol Logic, 2005, 104−119
[3]
Csima B, Mileti J. The strength of the rainbow Ramsey theorem. J Symbolic Logic, 2009, 74(4): 1310−1324
CrossRef Google scholar
[4]
Liu Jiayi. R T 2 2 does not imply WKL0.J Symbolic Logic, 2012, 77(2): 609−620
[5]
Nies A. Computability and Randomness. Oxford Logic Guides. Oxford: Oxford University Press, 2010
[6]
Simpson S G. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Berlin: Springer-Verlag, 1999
CrossRef Google scholar
[7]
Soare R I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Heidelberg: Springer-Verlag, 1987
CrossRef Google scholar
[8]
Wang Wei. Cohesive sets and rainbows. Ann Pure Appl Logic, 2014, 165(2): 389−408
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(154 KB)

Accesses

Citations

Detail

Sections
Recommended

/