Finite p-groups whose nonnormal subgroups have orders at most p3

Qinhai ZHANG, Xiaoxiao LI, Meijuan SU

PDF(204 KB)
PDF(204 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1169-1194. DOI: 10.1007/s11464-014-0389-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite p-groups whose nonnormal subgroups have orders at most p3

Author information +
History +

Abstract

We classify finite p-groups all of whose nonnormal subgroups have orders at most p3, podd prime. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3.

Keywords

Minimal non-abelian p-group / nonnormal subgroup / central extension

Cite this article

Download citation ▾
Qinhai ZHANG, Xiaoxiao LI, Meijuan SU. Finite p-groups whose nonnormal subgroups have orders at most p3. Front. Math. China, 2014, 9(5): 1169‒1194 https://doi.org/10.1007/s11464-014-0389-z

References

[1]
An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Ser A, 2014, 57(4): 737-753
CrossRef Google scholar
[2]
Berkovich Y. Short proofs of some basic characterization theorems of finite p-groups theory. Glas Mat Ser III, 2006, 41: 239-258
CrossRef Google scholar
[3]
Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008
[4]
Berkovich Y, Janko Z. Groups of Prime Power Order, Vol 2. Berlin: Walter de Gruyter, 2008
[5]
Berkovich Y, Janko Z. Groups of Prime Power Order, Vol 3. Berlin: Walter de Gruyter, 2011
[6]
Huppert B. Endliche Gruppen I. New York: Springer, 1967
CrossRef Google scholar
[7]
James R. The groups of order p6 (p an odd prime). Math Comp, 1980, 34: 613-637
[8]
Passman D. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352-370
CrossRef Google scholar
[9]
Xu M. A theorem on metabelian p-groups and some consequences. Chin Ann Math Ser B, 1984, 5: 1-6
[10]
Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603-3620
CrossRef Google scholar
[11]
Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165-1178
CrossRef Google scholar
[12]
Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23.Front Math China, 2012, 7(5): 971-1003
CrossRef Google scholar
[13]
Zhang Q, Sun X, An L, Xu M. Finite p-groups all of whose subgroups of index p2 are abelian. Algebra Colloq, 2008, 15(1): 167-180
CrossRef Google scholar
[14]
Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p3 are abelian (in preparation)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(204 KB)

Accesses

Citations

Detail

Sections
Recommended

/