Finite p-groups whose nonnormal subgroups have orders at most p3

Qinhai ZHANG , Xiaoxiao LI , Meijuan SU

Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1169 -1194.

PDF (204KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1169 -1194. DOI: 10.1007/s11464-014-0389-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite p-groups whose nonnormal subgroups have orders at most p3

Author information +
History +
PDF (204KB)

Abstract

We classify finite p-groups all of whose nonnormal subgroups have orders at most p3, podd prime. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3.

Keywords

Minimal non-abelian p-group / nonnormal subgroup / central extension

Cite this article

Download citation ▾
Qinhai ZHANG, Xiaoxiao LI, Meijuan SU. Finite p-groups whose nonnormal subgroups have orders at most p3. Front. Math. China, 2014, 9(5): 1169-1194 DOI:10.1007/s11464-014-0389-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Ser A, 2014, 57(4): 737-753

[2]

Berkovich Y. Short proofs of some basic characterization theorems of finite p-groups theory. Glas Mat Ser III, 2006, 41: 239-258

[3]

Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008

[4]

Berkovich Y, Janko Z. Groups of Prime Power Order, Vol 2. Berlin: Walter de Gruyter, 2008

[5]

Berkovich Y, Janko Z. Groups of Prime Power Order, Vol 3. Berlin: Walter de Gruyter, 2011

[6]

Huppert B. Endliche Gruppen I. New York: Springer, 1967

[7]

James R. The groups of order p6 (p an odd prime). Math Comp, 1980, 34: 613-637

[8]

Passman D. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352-370

[9]

Xu M. A theorem on metabelian p-groups and some consequences. Chin Ann Math Ser B, 1984, 5: 1-6

[10]

Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603-3620

[11]

Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165-1178

[12]

Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23.Front Math China, 2012, 7(5): 971-1003

[13]

Zhang Q, Sun X, An L, Xu M. Finite p-groups all of whose subgroups of index p2 are abelian. Algebra Colloq, 2008, 15(1): 167-180

[14]

Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p3 are abelian (in preparation)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (204KB)

916

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/