L2-Decay rate for non-ergodic Jackson network
Huihui CHENG, Yonghua MAO
L2-Decay rate for non-ergodic Jackson network
We establish the additive theorem of L2-decay rate for multidimensional Markov process with independent marginal processes. Using this and the decomposition method, we obtain explicit upper and lower bounds for decay rate of non-ergodic Jackson network. In some cases, we get the exact decay rate.
L2-Decay rate / additive theorem / decomposition method / Jackson network
[1] |
Chen M F. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains. Stochastic Process Appl, 2000, 87(2): 281-297
CrossRef
Google scholar
|
[2] |
Chen M F. Explicit bounds of the first eigenvalues. Sci China Ser A, 2000, 43: 1051-1059
CrossRef
Google scholar
|
[3] |
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 2004
|
[4] |
Chen M F. Speed of stability for birth-death processes. Front Math China, 2010, 5(3): 379-515
CrossRef
Google scholar
|
[5] |
Chen M F, Mao Y H. An Introduction to Stochastic Processes. Beijing: Higher Education Press, 2007 (in Cinese)
|
[6] |
van Doorn E A. Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv Appl Probab, 1985, 17(3): 514-530
CrossRef
Google scholar
|
[7] |
Goodman J M, Massey W A. The non-ergodic Jackson network. J Appl Probab, 1984, 21: 860-869
CrossRef
Google scholar
|
[8] |
Jackson J R. Networks of waiting lines. Oper Res, 1957, 5: 518-521
CrossRef
Google scholar
|
[9] |
Jackson J R. Jobshop-like queuing systems. Manag Sci, 1963, 10: 131-142
CrossRef
Google scholar
|
[10] |
Jerrum M, Son J B, Tetali P, Vigoda E. Elementary bounds on Poincaré and log-Sobolev constant for decomposable Markov chains. Ann Appl Probab, 2004, 14: 1741-1765
CrossRef
Google scholar
|
[11] |
Kelbert M Ya, Kontsevich M L, Rybko A N. On Jackson networks on countable graphs. Veroyatn Primen, 1988, 33: 379-382
|
[12] |
Mao Y H. Nash inequalities for Markov processes in dimension on<?Pub Caret?>e. Acta Math Sin (Engl Ser), 2002, 18(1): 147-156
CrossRef
Google scholar
|
[13] |
Mao Y H. General Sobolev type inequalities for symmetric forms. J Math Anal Appl, 2008, 33: 1092-1099
CrossRef
Google scholar
|
[14] |
Mao Y H. Lp Poincaré inequality for general symmetric forms. Acta Math Sin (Engl Ser), 2009, 25: 2055-2064
CrossRef
Google scholar
|
[15] |
Mao Y H, Ouyang S X. Strong ergodicity and uniform decay for Markov processes. Math Appl (Wuhan), 2006, 19(3): 580-586
|
[16] |
Mao Y H, Xia L H. Spectral gap for jump processes by decomposition method. Front Math China, 2009, 4(2): 335-348
CrossRef
Google scholar
|
[17] |
Mao Y H, Xia L H. The specrtal gap for quasi-birth and death processes. Acta Math Sin (Engl Ser), 2012, 28(5): 1075-1090
CrossRef
Google scholar
|
[18] |
Mao Y H, Xia L H. Spectral gap for open Jackson networks. 2012, Preprint
|
[19] |
Meyn S, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993
CrossRef
Google scholar
|
[20] |
Wang F Y. Functional inequalities for the decay of sub-Markov semigroups. Potential Anal, 2003, 18: 1-23
CrossRef
Google scholar
|
[21] |
Wang F Y. Functional Inequalities, Markov Semigroups and Spectral Theory. Beijing: Science Press, 2005
|
[22] |
Yau S T, Schoen R. Lectures on Differential Geometry. Beijing: Higher Education Press, 2004 (in Chinese)
|
/
〈 | 〉 |