Extensions of n-Hom Lie algebras

Ruipu BAI, Ying LI

PDF(124 KB)
PDF(124 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 511-522. DOI: 10.1007/s11464-014-0372-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Extensions of n-Hom Lie algebras

Author information +
History +

Abstract

n-Hom Lie algebras are twisted by n-Lie algebras by means of twisting maps. n-Hom Lie algebras have close relationships with statistical mechanics and mathematical physics. The paper main concerns structures and representations of n-Hom Lie algebras. The concept of nρ-cocycle for an n-Hom Lie algebra (G, [,… , ], α) related to a G-module (V, ρ, β) is proposed, and a sufficient condition for the existence of the dual representation of an n-Hom Lie algebra is provided. From a G-module (V, ρ, β) and an nρ-cocycle θ, an n-Hom Lie algebra (Tθ(V ), [, … , ]θ, γ) is constructed on the vector space Tθ(V ) = G⊕V, which is called the Tθ-extension of an n-Hom Lie algebra (G, [, … , ], α) by the G-module (V, ρ, β).

Keywords

n-Hom Lie algebra / representation / extension / nρ-cocycle

Cite this article

Download citation ▾
Ruipu BAI, Ying LI. Extensions of n-Hom Lie algebras. Front. Math. China, 2015, 10(3): 511‒522 https://doi.org/10.1007/s11464-014-0372-8

References

[1]
Ammar F, Mabrouk S, Makhlouf A. Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras. J Geom Phys, 2011, 61(10): 1898-1913
CrossRef Google scholar
[2]
Ataguema H, Makhlouf A, Silvestrov S. Generalization of n-ary Nambu algebras and beyond. J Math Phys, 2009, 50(8): 083501
CrossRef Google scholar
[3]
Azcarraga J, Izquierdo J. n-ary algebras: a review with applications. J Phys A, 2010, 43(29): 293001
CrossRef Google scholar
[4]
Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev, 2008, D77(6): 065008
CrossRef Google scholar
[5]
Bai R, Bai C, Wang J. Realizations of 3-Lie algebras. J Math Phys, 2010, 51(6): 063505
CrossRef Google scholar
[6]
Bai R, Li Y. Tθ*-Extensions of n-Lie Algebras. ISRN Algebra, 2011, V2011,
CrossRef Google scholar
[7]
Bai R, Li Y, Wu W. Extensions of n-Lie algebras. Sci Sin Math, 2012, 42(6): 1-10 (in Chinese)
[8]
Bai R, Wang J, Li Z. Derivations of the 3-Lie algebra realized by gl(n,C). J Nonlinear Math Phys, 2011, 18(1): 151-160
[9]
Baxter R. Partition function for the eight-vertex lattice model. Ann Physics, 1972, 70: 193-228
CrossRef Google scholar
[10]
Baxter R. Exactly Solved Models in Statistical Mechanics. London: Academic Press, 1982
[11]
Benayadi S, Makhlouf A. Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. arXiv: 1009.4225
[12]
Filippov V. n-Lie algebras. Sibirsk Mat Zh, 1985, 26(6): 126-140
[13]
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295(2): 314-361
CrossRef Google scholar
[14]
Kasymov S. On a theory of n-Lie algebras. Algebra Logika, 1987, 26(3): 277-297
CrossRef Google scholar
[15]
Marmo G, Vilasi G, Vinogradov A. The local structure of n-Poisson and n-Jacobi manifolds. J Geom Phys, 1998, 25(1-2): 141-182
CrossRef Google scholar
[16]
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev, 1973, D7: 2405-2412
CrossRef Google scholar
[17]
Okubo S. Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[18]
Pozhidaev A. Representations of vector product n-Lie algebras. Comm Algebra, 2004, 32(9): 3315-3326
CrossRef Google scholar
[19]
Yang C. Some exact results for the many-body problem in one dimension with replusive delta-function interaction. Phys Rev Lett, 1967, 19(23): 1312-1315
CrossRef Google scholar
[20]
Yau D. On n-ary hom Nambu and Hom-Nambu-Lie algebras. J Geom Phys, 2012, 62(2): 506-522
CrossRef Google scholar
[21]
Yau D. A Hom-associative analogue of n-ary Hom-Nambu algebras. arXiv: 1005.2373

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(124 KB)

Accesses

Citations

Detail

Sections
Recommended

/