Approximation by semigroup of spherical operators

Yuguang WANG, Feilong CAO

PDF(253 KB)
PDF(253 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 387-416. DOI: 10.1007/s11464-014-0361-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximation by semigroup of spherical operators

Author information +
History +

Abstract

This paper concerns about the approximation by a class of positive exponential type multiplier operators on the unit sphere Sn of the (n + 1)-dimensional Euclidean space for n≥2.We prove that such operators form a strongly continuous contraction semigroup of class (C0) and show the equivalence between the approximation errors of these operators and the K-functionals. We also give the saturation order and the saturation class of these operators. As examples, the rth Boolean of the generalized spherical Abel-Poisson operator rVtγ and the rth Boolean of the generalized spherical Weierstrass operator rWtk for integer r≥1 and reals γ, κ (0, 1] have errors rVtγf-fXωrγ(f,t1/γ)X and rWtkf-fXω2rk(f,t1/(2k))X for all fX and 0≤t≤2π, where Xis the Banach space of all continuous functions or all Lpintegrable functions, 1≤p<+∞, on Sn with norm X, and ωs(f,t)Xis the modulus of smoothness of degree s>0 for fX. Moreover, rVtγ and rWtk have the same saturation class if γ=2κ.

Keywords

Sphere / semigroup / approximation / modulus of smoothness / multiplier

Cite this article

Download citation ▾
Yuguang WANG, Feilong CAO. Approximation by semigroup of spherical operators. Front. Math. China, 2014, 9(2): 387‒416 https://doi.org/10.1007/s11464-014-0361-y

References

[1]
AskeyR, WaingerS. On the behavior of special classes of ultraspherical expansions, I. J d’Analyse Math, 1965, 15: 193-220
CrossRef Google scholar
[2]
AskeyR, WaingerS. On the behavior of special classes of ultraspherical expansions, II. J d’Analyse Math, 1965, 15: 221-244
CrossRef Google scholar
[3]
BerensH, ButzerP L, PawelkeS. Limitierungsverfahren von reihen mehrdimensionaler kugelfunktionen und deren saturationsverhalten. Publ Res Inst Math Sci Ser A, 1968, 4(2): 201-268
CrossRef Google scholar
[4]
BochnerS. Quasi analytic functions, Laplace operator, positive kernels. Ann Math, 1950, 51(1): 68-91
CrossRef Google scholar
[5]
BochnerS. Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions. In: Proceedings of the Conference on Differential Equations. University of Maryland, 1955, 23-48
[6]
ButzerP L, BerensH. Semi-groups of Operators and Approximation. Berlin: Springer, 1967
CrossRef Google scholar
[7]
DaiF. Some equivalence theorems with K-functionals. J Approx Theory, 2003, 121: 143-157
CrossRef Google scholar
[8]
DaiF, DitzianZ. Strong converse inequality for Poisson sums. Proc Amer Math Soc, 2005, 133(9): 2609-2611
CrossRef Google scholar
[9]
DitzianZ, IvanovK. Strong converse inequalities. J d’Analyse Math, 1993, 61: 61-111
CrossRef Google scholar
[10]
DunklC F. Operators and harmonic analysis on the sphere. Trans Amer Math Soc, 1966, 125(2): 250-263
CrossRef Google scholar
[11]
FavardJ. Sur l’approximation des fonctions d’une variable reelle. Colloque d’Anal Harmon Publ CNRS, Paris, 1949, 15: 97-110
[12]
KaczmarzS, SteinhausH. Theorie der Orthogonalreihen. Warsaw: Instytut Matematyczny Polskiej Akademi Nauk, 1935
[13]
KuttnerB. On positive Riesz and Abel typical means. Proc Lond Math Soc Ser 2, 1947, 49(1): 328-352
[14]
RiemenschneiderS, WangK Y. Approximation theorems of Jackson type on the sphere. Adv Math (China), 1995, 24(2): 184-186
[15]
SzegöG. Orthogonal Polynomials. Providence: Amer Math Soc, 2003
[16]
WangK Y, LiL Q. Harmonic Analysis and Approximation on the Unit Sphere. Beijing: Science Press, 2006

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/