Exponential sums involving Maass forms

Qingfeng SUN, Yuanying WU

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1349-1366. DOI: 10.1007/s11464-014-0360-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Exponential sums involving Maass forms

Author information +
History +

Abstract

We study the exponential sums involving Fourier coefficients of Maass forms and exponential functions of the form e(αnβ),where 0α and 0<β<1. An asymptotic formula is proved for the nonlinear exponential sum X<n2Xλg(n)e(αnβ), when β = 1/2 and |α| is close to 2q, q+, where λg(n) is the normalized n-th Fourier coefficient of a Maass cusp form for SL2(). The similar natures of the divisor function τ(n) and the representation function r(n) in the circle problem in nonlinear exponential sums of the above type are also studied.

Keywords

Fourier coefficients of Maass form / nonlinear exponential sum / number-theoretic function

Cite this article

Download citation ▾
Qingfeng SUN, Yuanying WU. Exponential sums involving Maass forms. Front. Math. China, 2014, 9(6): 1349‒1366 https://doi.org/10.1007/s11464-014-0360-z

References

[1]
Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. 7th ed. New York: Academic Press, 2007
[2]
Hafner J L. Some remarks on Maass wave forms (and a correction to [1]). Math Z, 1987, 196: 129-132
CrossRef Google scholar
[3]
Iwaniec H. Spectral Methods of Automorphic Forms. 2nd ed. Graduate Studies in Mathematics, Vol 53. Providence: Amer Math Soc, 2002
[4]
Iwaniec H, Kowalski E. Analytic Number Theory. Colloquium Publ, Vol 53. Providence: Amer Math Soc, 2004
[5]
Iwaniec H, Luo W, Sarnak P. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55-131
CrossRef Google scholar
[6]
Kaczorowski J, Perelli A. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315-341
CrossRef Google scholar
[7]
Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with appendix 1 by Ramakrishnan D and appendix 2 by Kim H and Sarnak P). J Amer Math Soc, 2003, 16: 139-183
CrossRef Google scholar
[8]
Kowalski E, Michel P, Vanderkam J. Rankin-Selberg L-functions in the level aspect. Duke Math J, 2002, 114: 123-191
CrossRef Google scholar
[9]
Miller S D, Schmid W. The highly oscillatory behavior of automorphic distributions for SL(2). Lett Math Phys, 2004, 69: 265-286
CrossRef Google scholar
[10]
Ren X M, Ye Y B. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463-2472
CrossRef Google scholar
[11]
Sun Q F. On cusp form coefficients in nonlinear exponential sums. Quart J Math, 2010, 61(3): 363-372
CrossRef Google scholar
[12]
Titchmarsh E C. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Oxford University Press, 1986

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/