Radically distributed value and normal families of meromorphic functions

Jianming QI, Guowei ZHANG, Wenjun YUAN

PDF(186 KB)
PDF(186 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 355-376. DOI: 10.1007/s11464-014-0357-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Radically distributed value and normal families of meromorphic functions

Author information +
History +

Abstract

We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.

Keywords

Meromorphic function / Nevanlinna theory / normal family / angular characteristic function / radially distributed value

Cite this article

Download citation ▾
Jianming QI, Guowei ZHANG, Wenjun YUAN. Radically distributed value and normal families of meromorphic functions. Front. Math. China, 2014, 9(2): 355‒376 https://doi.org/10.1007/s11464-014-0357-7

References

[1]
BaernsteinA. Proof of Edrei’s spread conjecture. Proc Lond Math Soc, 1973, 26: 418-434
CrossRef Google scholar
[2]
BergweilerW, EremenkoA. On the singularities of the inverse to a meromorphic function of finite order. Rev Mat Iberoam, 1995, 11(2): 355-373
CrossRef Google scholar
[3]
ChenS J, LinW C, ChenJ F. on the growth of meromorphic functions with a radially distributed value. Indian J Pure Appl Math, 2011, 42(1): 53-70
CrossRef Google scholar
[4]
ChuangC T. Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa dérivée. Bull Sci Math, 1951, 75: 171-190
[5]
EdreiA. Meromorphic functions with three radially distributed values. Trans Amer Math Soc, 1955, 78: 276-293 376 Jianming QI et al.
[6]
EdreiA. Sums of deficiencies of meromorphic function. J Analyse Math, 1965, 14: 79-107
CrossRef Google scholar
[7]
FangM L, ZalcmanL. On value distribution of f + α(f′)n. Sci China Ser A, 2008, 38(3): 279-285
[8]
Gol’dbergA A, OstrovskiiI V. The Distribution of Values of Meromorphic Functions. Moscow: Izdat Nauka, 1970 (in Russian)
[9]
HaymanW K. Meromorphic Functions. Oxford: Clarendon Press, 1964
[10]
HaymanW K, MilesJ. On the growth of a meromorphic function and its derivatives. Complex Variables, 1989, 12: 245-260
CrossRef Google scholar
[11]
HeY Z, XiaoX Z. Algebroid Functions and Ordinary Differential Equations. Beijing: Science Press, 1988 (in Chinese)
[12]
LaineI. Nevanlinna Theory and Complex Differential Equations. Berlin: de Gruyter, 1993
[13]
NevanlinnaR. Uber die eigenschaften meromorphic funktionen in einem winkelraum. Acta Soc Sci Feen, 1925, 50: 1-45
[14]
PangX C, ZalcmanL. Normal families and shared values. Bull Lond Math Soc, 2000, 32: 325-331
CrossRef Google scholar
[15]
QiJ M, ZhuT Y. Some normal criteria about shared values with their multiplicity zeros. Abstr Appl Anal, 2010,
CrossRef Google scholar
[16]
XuY, WuF Q, LiaoL W. Picard values and normal families of meromorphic functions. Proc Roy Soc Edinburgh Sect A, 2009, 139: 1091-1099
CrossRef Google scholar
[17]
YangL. Borel directions of meromorphic functions in an angular domain. Sci China, 1979, (Math Ser I): 149-163
[18]
YangL, YangC C. Angular distribution of values of f f′. Sci China Ser A-Math, 1994, 37: 284-294
[19]
ZalcmanL. A heuristic principle in complex function theory. Amer Math Monthly, 1975, 82: 813-817
CrossRef Google scholar
[20]
ZhengJ H. On transcendental meromorphic functions with radially distributed values. Sci China Ser A-Math, 2004, 47: 401-416
CrossRef Google scholar
[21]
ZhengJ H. Value Distribution of Meromorphic Functions. Berlin: Springer, 2010

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(186 KB)

Accesses

Citations

Detail

Sections
Recommended

/