Hom-Malcev superalgebras

Jizhu NAN, Chunyue WANG, Qingcheng ZHANG

PDF(157 KB)
PDF(157 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 567-584. DOI: 10.1007/s11464-014-0351-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Hom-Malcev superalgebras

Author information +
History +

Abstract

Hom-Malcev superalgebras can be considered as a deformation of Malcev superalgebras. We give the definition of Hom-Malcev superalgebras. Moreover, we characterize the Hom-Malcev operator and the representation of Hom-Malcev superalgebras. Finally, we study the central extension and the double extension of Hom-Malcev superalgebras.

Keywords

Hom-Malcev superalgebra / Hom-Malcev operator / representation / central extension / double extension

Cite this article

Download citation ▾
Jizhu NAN, Chunyue WANG, Qingcheng ZHANG. Hom-Malcev superalgebras. Front. Math. China, 2014, 9(3): 567‒584 https://doi.org/10.1007/s11464-014-0351-0

References

[1]
AlbuquerqueH. A classification of Malcev superalgebras of small dimensions. Algebra Logic, 1996, 35(6): 351-365
CrossRef Google scholar
[2]
AlbuquerqueH, BenayadiS. Quadratic Malcev superalgebras. J Pure Appl Algebra, 2004, 187(1): 19-45
CrossRef Google scholar
[3]
AlbuquerqueH, ElduqueA. Malcev superalgebras with trivial nucleus. Comm Algebra, 1993, 21(9): 3147-3164
CrossRef Google scholar
[4]
AlbuquerqueH, ElduqueA. Engel’s theorem for Malcev superalgebras. Comm Algebra, 1994, 22(14): 5689-5701
CrossRef Google scholar
[5]
AlbuquerqueH, BarreiroE, BenayadiS. Quadratic Malcev superalgebras with reductive even part. Comm Algebra, 2010, 38(2): 785-797
CrossRef Google scholar
[6]
AmmarF, MakhloufA. Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J Algebra, 2010, 324(7): 1513-1528
CrossRef Google scholar
[7]
ElduqueA. On a class of Malcev superalgebras. J Algebra, 1995, 173(2): 237-252
CrossRef Google scholar
[8]
ElduqueA, ShestakovI P. Irreducible non-Lie modules for Malcev superalgebras. J Algebra, 1995, 173(3): 622-637
CrossRef Google scholar
[9]
ElhamdadiM, MakhloufA. Deformations of Hom-Alternative and Hom-Malcev algebras. Algebras Groups Geom, 2011, 28(2): 117-145
[10]
HartwingJ, LarssonD, SilvestrovS. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295(2): 314-361
CrossRef Google scholar
[11]
JinQ Q, LiX C. Hom-Lie algebra structures on semi-simple Lie algebras. J Algebra, 2008, 319(4): 1398-1408
CrossRef Google scholar
[12]
LarssonD, SilvestrovD. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J Algebra, 2005, 288(2): 321-344
CrossRef Google scholar
[13]
ShengY H. Representions of hom-Lie algebras. Algebr Represent Theory, 2012, 5(6): 1081-1098
CrossRef Google scholar
[14]
ShestakovI P, ElduqueA. Prime non-Lie modules for Mal’tsev superalgebras. Algebra Logika, 1994, 33(4): 448-465
CrossRef Google scholar
[15]
ShestakovI P. Prime Mal’tsev superalgebras. Mat Sb, 1991, 182(9): 1357-1366
[16]
ShestakovI P, ZhukavetsN. Speciality of Malcev superalgebras on one odd generator. J Algebra, 2006, 301(2): 587-600
CrossRef Google scholar
[17]
YauD. Hom-Maltsev, Hom-alternative and Hom-Jordan algebras. Int Electron J Algebra, 2012, 11: 177-217
[18]
YuanJ X, SunL P, LiuW D. Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields. arXiv: 1304.5616

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(157 KB)

Accesses

Citations

Detail

Sections
Recommended

/