Hom-Malcev superalgebras

Jizhu NAN , Chunyue WANG , Qingcheng ZHANG

Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 567 -584.

PDF (157KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 567 -584. DOI: 10.1007/s11464-014-0351-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Hom-Malcev superalgebras

Author information +
History +
PDF (157KB)

Abstract

Hom-Malcev superalgebras can be considered as a deformation of Malcev superalgebras. We give the definition of Hom-Malcev superalgebras. Moreover, we characterize the Hom-Malcev operator and the representation of Hom-Malcev superalgebras. Finally, we study the central extension and the double extension of Hom-Malcev superalgebras.

Keywords

Hom-Malcev superalgebra / Hom-Malcev operator / representation / central extension / double extension

Cite this article

Download citation ▾
Jizhu NAN, Chunyue WANG, Qingcheng ZHANG. Hom-Malcev superalgebras. Front. Math. China, 2014, 9(3): 567-584 DOI:10.1007/s11464-014-0351-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbuquerqueH. A classification of Malcev superalgebras of small dimensions. Algebra Logic, 1996, 35(6): 351-365

[2]

AlbuquerqueH, BenayadiS. Quadratic Malcev superalgebras. J Pure Appl Algebra, 2004, 187(1): 19-45

[3]

AlbuquerqueH, ElduqueA. Malcev superalgebras with trivial nucleus. Comm Algebra, 1993, 21(9): 3147-3164

[4]

AlbuquerqueH, ElduqueA. Engel’s theorem for Malcev superalgebras. Comm Algebra, 1994, 22(14): 5689-5701

[5]

AlbuquerqueH, BarreiroE, BenayadiS. Quadratic Malcev superalgebras with reductive even part. Comm Algebra, 2010, 38(2): 785-797

[6]

AmmarF, MakhloufA. Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J Algebra, 2010, 324(7): 1513-1528

[7]

ElduqueA. On a class of Malcev superalgebras. J Algebra, 1995, 173(2): 237-252

[8]

ElduqueA, ShestakovI P. Irreducible non-Lie modules for Malcev superalgebras. J Algebra, 1995, 173(3): 622-637

[9]

ElhamdadiM, MakhloufA. Deformations of Hom-Alternative and Hom-Malcev algebras. Algebras Groups Geom, 2011, 28(2): 117-145

[10]

HartwingJ, LarssonD, SilvestrovS. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295(2): 314-361

[11]

JinQ Q, LiX C. Hom-Lie algebra structures on semi-simple Lie algebras. J Algebra, 2008, 319(4): 1398-1408

[12]

LarssonD, SilvestrovD. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J Algebra, 2005, 288(2): 321-344

[13]

ShengY H. Representions of hom-Lie algebras. Algebr Represent Theory, 2012, 5(6): 1081-1098

[14]

ShestakovI P, ElduqueA. Prime non-Lie modules for Mal’tsev superalgebras. Algebra Logika, 1994, 33(4): 448-465

[15]

ShestakovI P. Prime Mal’tsev superalgebras. Mat Sb, 1991, 182(9): 1357-1366

[16]

ShestakovI P, ZhukavetsN. Speciality of Malcev superalgebras on one odd generator. J Algebra, 2006, 301(2): 587-600

[17]

YauD. Hom-Maltsev, Hom-alternative and Hom-Jordan algebras. Int Electron J Algebra, 2012, 11: 177-217

[18]

YuanJ X, SunL P, LiuW D. Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields. arXiv: 1304.5616

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (157KB)

878

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/