Hom-Malcev superalgebras
Jizhu NAN, Chunyue WANG, Qingcheng ZHANG
Hom-Malcev superalgebras
Hom-Malcev superalgebras can be considered as a deformation of Malcev superalgebras. We give the definition of Hom-Malcev superalgebras. Moreover, we characterize the Hom-Malcev operator and the representation of Hom-Malcev superalgebras. Finally, we study the central extension and the double extension of Hom-Malcev superalgebras.
Hom-Malcev superalgebra / Hom-Malcev operator / representation / central extension / double extension
[1] |
AlbuquerqueH. A classification of Malcev superalgebras of small dimensions. Algebra Logic, 1996, 35(6): 351-365
CrossRef
Google scholar
|
[2] |
AlbuquerqueH, BenayadiS. Quadratic Malcev superalgebras. J Pure Appl Algebra, 2004, 187(1): 19-45
CrossRef
Google scholar
|
[3] |
AlbuquerqueH, ElduqueA. Malcev superalgebras with trivial nucleus. Comm Algebra, 1993, 21(9): 3147-3164
CrossRef
Google scholar
|
[4] |
AlbuquerqueH, ElduqueA. Engel’s theorem for Malcev superalgebras. Comm Algebra, 1994, 22(14): 5689-5701
CrossRef
Google scholar
|
[5] |
AlbuquerqueH, BarreiroE, BenayadiS. Quadratic Malcev superalgebras with reductive even part. Comm Algebra, 2010, 38(2): 785-797
CrossRef
Google scholar
|
[6] |
AmmarF, MakhloufA. Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J Algebra, 2010, 324(7): 1513-1528
CrossRef
Google scholar
|
[7] |
ElduqueA. On a class of Malcev superalgebras. J Algebra, 1995, 173(2): 237-252
CrossRef
Google scholar
|
[8] |
ElduqueA, ShestakovI P. Irreducible non-Lie modules for Malcev superalgebras. J Algebra, 1995, 173(3): 622-637
CrossRef
Google scholar
|
[9] |
ElhamdadiM, MakhloufA. Deformations of Hom-Alternative and Hom-Malcev algebras. Algebras Groups Geom, 2011, 28(2): 117-145
|
[10] |
HartwingJ, LarssonD, SilvestrovS. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295(2): 314-361
CrossRef
Google scholar
|
[11] |
JinQ Q, LiX C. Hom-Lie algebra structures on semi-simple Lie algebras. J Algebra, 2008, 319(4): 1398-1408
CrossRef
Google scholar
|
[12] |
LarssonD, SilvestrovD. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J Algebra, 2005, 288(2): 321-344
CrossRef
Google scholar
|
[13] |
ShengY H. Representions of hom-Lie algebras. Algebr Represent Theory, 2012, 5(6): 1081-1098
CrossRef
Google scholar
|
[14] |
ShestakovI P, ElduqueA. Prime non-Lie modules for Mal’tsev superalgebras. Algebra Logika, 1994, 33(4): 448-465
CrossRef
Google scholar
|
[15] |
ShestakovI P. Prime Mal’tsev superalgebras. Mat Sb, 1991, 182(9): 1357-1366
|
[16] |
ShestakovI P, ZhukavetsN. Speciality of Malcev superalgebras on one odd generator. J Algebra, 2006, 301(2): 587-600
CrossRef
Google scholar
|
[17] |
YauD. Hom-Maltsev, Hom-alternative and Hom-Jordan algebras. Int Electron J Algebra, 2012, 11: 177-217
|
[18] |
YuanJ X, SunL P, LiuW D. Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields. arXiv: 1304.5616
|
/
〈 | 〉 |