Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges

Xie-Bin CHEN

Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 17 -30.

PDF (145KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 17 -30. DOI: 10.1007/s11464-013-0344-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges

Author information +
History +
PDF (145KB)

Abstract

The k-ary n-cube Qnk (n≥2 and k≥3) is one of the most popular interconnection networks. In this paper, we consider the problem of a faultfree Hamiltonian cycle passing through a prescribed linear forest (i.e., pairwise vertex-disjoint paths) in the 3-ary n-cube Qn3 with faulty edges. The following result is obtained. Let E0 (≠Ø) be a linear forest and F (≠Ø) be a set of faulty edges in Qn3 such that E0F = Øand |E0| + |F|≤2n - 2. Then all edges of E0 lie on a Hamiltonian cycle in Qn3-F,and the upper bound 2n-2 is sharp.

Keywords

Hamiltonian cycle / fault-tolerance / 3-ary n-cube / linear forest / interconnection network

Cite this article

Download citation ▾
Xie-Bin CHEN. Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges. Front. Math. China, 2014, 9(1): 17-30 DOI:10.1007/s11464-013-0344-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondy J A, Murty U S R. Graph Theory. New York: Springer, 2007

[2]

Chen X B. Cycles passing through prescribed edges in a hypercube with some faulty edges. Inform Process Lett, 2007, 104: 211-215

[3]

Chen X B. On path bipancyclicity of hypercubes. Inform Process Lett, 2009, 109: 594-598

[4]

Chen X B. Hamitonian paths and cycles passing through a prescribed path in hypercubes. Inform Process Lett, 2009, 110: 77-82

[5]

Chen X B. Cycles passing through a prescribed path in a hypercube with faulty edges. Inform Process Lett, 2010, 110: 625-629

[6]

Dong Q, Yang X, Wang D. Embedding paths and cycles in 3-ary n-cubes with faulty nodes and links. Inform Sci, 2010, 180: 198-208

[7]

Dvořák T. Hamiltonian cycles with prescribed edges in hypercubes. SIAM J Discrete Math, 2005, 19: 135-144

[8]

Dvořák T, Greror P. Hamiltonian paths with prescribed edges in hypercubes. Discrete Math, 2007, 307: 1982-1998

[9]

Fan J, Jia X. Edge-pancyclicity and path-embeddability of bijective connection graphs. Inform Sci, 2008, 178: 340-351

[10]

Fan J, Jia X, Lin X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica, 2008, 51: 264-282

[11]

Fan J, Lin X, Jia X, Lau R W H. Edge-pancyclicity of twisted cubes. Lecture Notes in Computer Sciences, 2005, 3827: 1090-1099

[12]

Hsieh S Y, Lin T J. Panconnectivity and edge-pancyclicity of k-ary n-cube. Networks, 2009, 54: 1-11

[13]

Hsieh S Y, Lin T J, Huang H L. Panconnectivity and edge-pancyclicity of 3-ary n-cubes. J Supercomputing, 2007, 42: 225-233

[14]

Li J, Wang S, Liu D. Pancyclicity of ternary n-cube networks under the conditional fault model. Inform Process Lett, 2011, 111: 370-374

[15]

Li J, Wang S, Liu D, Lin S. Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges. Inform Sci, 2011, 181: 2260-2267

[16]

Lin S, Wang S, Li C. Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements. Discrete Appl Math, 2011, 159: 212-223

[17]

Stewart I A, Xiang Y. Embedding long paths in k-ary n-cubes with faulty nodes and links. IEEE Trans Parall Distrib Sys, 2008, 19: 1071-1085

[18]

Stewart I A, Xiang Y, Bipanconnectivity and bipancyclicity in k-ary n-cubes. IEEE Trans Parall Distrib Sys, 2009, 20: 25-33

[19]

Teng Y H, Tan J J M, Tsay C W, Hsu L H. The paths embedding of the arrangement graphs with prescribed vertices in given position. J Combin Optim, 2012, 24: 627-646

[20]

Tsai C H. Fault-free cycles passing through prescribed paths in hypercubes with faulty edges. Appl Math Lett, 2009, 22: 852-855

[21]

Wang S, Li J, Wang R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cubes. Inform Sci, 2011, 181: 3054-3065

[22]

Wang S, Lin S. Path embeddings in faulty 3-ary n-cubes. Inform Sci, 2010, 180: 191-197

[23]

Wang W Q, Chen X B. A fault-free Hamiltonian cycle passing through prescribed edges in a hypercube with faulty edges. Inform Process Lett, 2008, 107: 205-210

[24]

Xiang Y, Stewart I A. Bipancyclicity in k-ary n-cubes with faulty edges under a conditional fault assumption. IEEE Trans Parall Distrib Sys, 2011, 22: 1506-1513

[25]

Xu J M, Ma M. A survey on path and cycle embedding in some networks. Front Math China, 2009, 4: 217-252

[26]

Yang M C, Tan J J M, Hsu L H. Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes. J Parall Distrib Computing, 2007, 67: 362-368

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (145KB)

872

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/