On U-ample ω-semigroups

Siyao Ma , Xueming Ren , Ying Yuan

Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1391 -1405.

PDF (142KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1391 -1405. DOI: 10.1007/s11464-013-0337-3
Research Article
RESEARCH ARTICLE

On U-ample ω-semigroups

Author information +
History +
PDF (142KB)

Abstract

The investigation of U-ample ω-semigroups is initiated. After obtaining some properties of such semigroups, a structure of U-ample ω-semigroups is established. It is proved that a semigroup is a U-ample ω-semigroup if and only if it can be expressed by WBR(T, θ), namely, the weakly Bruck-Reilly extensions of a monoid T. This result not only extends and amplifies the structure theorem of bisimple inverse ω-semigroups given by N. R. Reilly, but also generalizes the structure theorem of *-bisimple type A ω-semigroups given by U. Asibong-Ibe in 1985.

Keywords

Bisimple inverse ω-semigroups / weakly U-abundant semigroups / Ehresmann semigroups / U-ample ω-semigroups

Cite this article

Download citation ▾
Siyao Ma, Xueming Ren, Ying Yuan. On U-ample ω-semigroups. Front. Math. China, 2013, 8(6): 1391-1405 DOI:10.1007/s11464-013-0337-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asibong-Ibe U. *-bisimple type A ω-semigroups-I. Semigroup Forum, 1985, 31: 99-117

[2]

Fountain J B. Adequate semigroups. Proc Edinb Math Soc, 1979, 22: 113-125

[3]

Fountain J B. Abundant semigroups. Proc London Math Soc, 1982, 44(3): 103-129

[4]

Fountain J B, Gomes G M S, Gould V. A Munn type representation for a class of E-semiadequate semigroups. J Algebra, 1999, 218: 693-714

[5]

Gomes G M S, Gould V. Fundamental Ehresmann semigroups. Semigroup Forum, 2001, 63: 11-33

[6]

Guo Y Q, Shum K P, Gong C M. (*, ∼)-Greens relations and ortho-lc-monoids. Comm Algebra, 2011, 39(1): 5-31

[7]

He Y, Shum K P, Wang Z P. Good B-quasi-Ehresmann semigroups. Sci China Ser A, 2010, 53(5): 1345-1356

[8]

Howie J M. Fundamentals of Semigroup Theory, 1995, Oxford: Clarendon Press

[9]

Lawson M V. Rees matrix semigroups. Proc Edinb Math Soc, 1990, 3: 23-37

[10]

Lawson M V. Semigroups and ordered categories, I. the reduced case. J Algebra, 1991, 141: 422-462

[11]

Li G, Guo Y Q, Shum K P. Quasi-C-Ehresmann semigroups and their sub-classes. Semigroup Forum, 2005, 70: 369-390

[12]

Ma S Y, Ren X M, Yuan Y. Completely ℐ̃-simple semigroups. Acta Math Sinica (Chin Ser), 2011, 54(4): 643-650

[13]

Reilly N R. Bisimple inverse ω-semigroups. Glasg Math Soc, 1966, 7: 160-167

[14]

Ren X M, Shum K P. The structure of Q*-inverse semigroups. J Algebra, 2011, 325: 1-17

[15]

Ren X M, Wang Y H, Shum K P. On U-orthodox semigroups. Sci China Ser A, 2009, 52(2): 329-350

[16]

Ren X M, Yang D D, Shum K P. On locally Ehresmann semigroups. J Algebra Appl, 2011, 10(6): 1165-1186

[17]

Ren X M, Yin Q Y, Shum K P. On Uσ-abundant semigroups. Algebra Colloq, 2012, 19(1): 41-52

[18]

Shum K P. Rpp semigroups, its generalizations and special subclasses. Advances in Algebra and Combinatorics, 2008, Hackensack: World Sci Publ 303 334

[19]

Shum K P, Du L, Guo Y Q. Green’s relations and their generalizations on semigroups. Discuss Math Gen Algebra Appl, 2010, 30(1): 71-89

AI Summary AI Mindmap
PDF (142KB)

801

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/