On U-ample ω-semigroups

Siyao MA, Xueming REN, Ying YUAN

PDF(142 KB)
PDF(142 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1391-1405. DOI: 10.1007/s11464-013-0337-3
RESEARCH ARTICLE
RESEARCH ARTICLE

On U-ample ω-semigroups

Author information +
History +

Abstract

The investigation of U-ample ω-semigroups is initiated. After obtaining some properties of such semigroups, a structure of U-ample ω-semigroups is established. It is proved that a semigroup is a U-ample ω-semigroup if and only if it can be expressed by WBR(T, θ), namely, the weakly Bruck-Reilly extensions of a monoid T. This result not only extends and amplifies the structure theorem of bisimple inverse ω-semigroups given by N. R. Reilly, but also generalizes the structure theorem of ∗-bisimple type A ω-semigroups given by U. Asibong-Ibe in 1985.

Keywords

Bisimple inverse ω-semigroups / weakly U-abundant semigroups / Ehresmann semigroups / U-ample ω-semigroups

Cite this article

Download citation ▾
Siyao MA, Xueming REN, Ying YUAN. On U-ample ω-semigroups. Front Math Chin, 2013, 8(6): 1391‒1405 https://doi.org/10.1007/s11464-013-0337-3

References

[1]
Asibong-Ibe U. ∗-bisimple type A ω-semigroups-I. Semigroup Forum, 1985, 31: 99-117
CrossRef Google scholar
[2]
Fountain J B. Adequate semigroups. Proc Edinb Math Soc, 1979, 22: 113-125
CrossRef Google scholar
[3]
Fountain J B. Abundant semigroups. Proc London Math Soc, 1982, 44(3): 103-129
CrossRef Google scholar
[4]
Fountain J B, Gomes G M S, Gould V. A Munn type representation for a class of E-semiadequate semigroups. J Algebra, 1999, 218: 693-714
CrossRef Google scholar
[5]
Gomes G M S, Gould V. Fundamental Ehresmann semigroups. Semigroup Forum, 2001, 63: 11-33
CrossRef Google scholar
[6]
Guo Y Q, Shum K P, Gong C M. (∗,∼)-Greens relations and ortho-lc-monoids. Comm Algebra, 2011, 39(1): 5-31
CrossRef Google scholar
[7]
He Y, Shum K P, Wang Z P. Good B-quasi-Ehresmann semigroups. Sci China Ser A, 2010, 53(5): 1345-1356
CrossRef Google scholar
[8]
Howie J M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995
[9]
Lawson M V. Rees matrix semigroups. Proc Edinb Math Soc, 1990, 3: 23-37
CrossRef Google scholar
[10]
Lawson M V. Semigroups and ordered categories, I. the reduced case. J Algebra, 1991, 141: 422-462
CrossRef Google scholar
[11]
Li G, Guo Y Q, Shum K P. Quasi-C-Ehresmann semigroups and their sub-classes. Semigroup Forum, 2005, 70: 369-390
CrossRef Google scholar
[12]
Ma S Y, Ren X M, Yuan Y. Completely g~-simple semigroups. Acta Math Sinica (Chin Ser), 2011, 54(4): 643-650 (in Chinese)
[13]
Reilly N R. Bisimple inverse ω-semigroups. Glasg Math Soc, 1966, 7: 160-167
[14]
Ren X M, Shum K P. The structure of 2*-inverse semigroups. J Algebra, 2011, 325: 1-17
CrossRef Google scholar
[15]
Ren X M, Wang Y H, Shum K P. On U-orthodox semigroups. Sci China Ser A, 2009, 52(2): 329-350
CrossRef Google scholar
[16]
Ren X M, Yang D D, Shum K P. On locally Ehresmann semigroups. J Algebra Appl, 2011, 10(6): 1165-1186
CrossRef Google scholar
[17]
Ren X M, Yin Q Y, Shum K P. On Uσ-abundant semigroups. Algebra Colloq, 2012, 19(1): 41-52
[18]
Shum K P. Rpp semigroups, its generalizations and special subclasses. In: Advances in Algebra and Combinatorics. Hackensack: World Sci Publ, 2008, 303-334
[19]
Shum K P, Du L, Guo Y Q. Green’s relations and their generalizations on semigroups. Discuss Math Gen Algebra Appl, 2010, 30(1): 71-89
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(142 KB)

Accesses

Citations

Detail

Sections
Recommended

/