Construction of periodic wavelet frames with dilation matrix
Dayong LU, Dengfeng LI
Construction of periodic wavelet frames with dilation matrix
An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We extend their results to the dilation matrix cases in two aspects. We first show that the periodization of any wavelet frame constructed by the unitary extension principle formulated by Ron and Shen is still a periodic wavelet frame under weaker conditions than that given by Zhang and Saito, and then prove that the periodization of those generated by the mixed extension principle is also a periodic wavelet frame if the scaling functions have compact supports.
Periodic wavelet frames / extension principle / matrix dilation / function periodization
[1] |
Benedetto J J, Treiber O M. Wavelet frames: multiresolution analysis and extension principles. In: Debnath L, ed. Wavelet Transforms and Time-Frequency Signal Analysis. Boston: Birkhäuser, 2001, 3-36
CrossRef
Google scholar
|
[2] |
Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003
CrossRef
Google scholar
|
[3] |
Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992
|
[4] |
Daubechies I, Han B. Pairs of dual wavelet frames from any two refinable functions. Constr Approx, 2004, 20: 325-352
CrossRef
Google scholar
|
[5] |
Daubechies I, Han B, Ron A, Shen Z. Framelets: MRA-based constructions of wavelet frames. Appl Comput Harmon Anal, 2003, 1: 1-46
CrossRef
Google scholar
|
[6] |
Ehler M. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J Approx, 2010, 2(2): 193-214
|
[7] |
Goh S S, Lee S L, Teo K M. Multidimensional periodic multiwavelets. J Approx Theory, 1999, 98: 72-103
CrossRef
Google scholar
|
[8] |
Goh S S, Teo K M. Extension principles for tight wavelet frames of periodic functions. Appl Comput Harmon Anal, 2009, 27: 12-23
CrossRef
Google scholar
|
[9] |
Goodman T N T. Construction of wavelets with multiplicity. Rend Mat, 1994, 15(7): 665-691
|
[10] |
Han B. On dual wavelet tight frames. Appl Comput Harmon Anal, 1997, 4: 380-413
CrossRef
Google scholar
|
[11] |
Han B. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math, 2003, 155: 43-67
CrossRef
Google scholar
|
[12] |
Han B. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl Comput Harmon Anal, 2009, 26: 14-42
CrossRef
Google scholar
|
[13] |
Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl Comput Harmon Anal, 2005, 18: 67-93
CrossRef
Google scholar
|
[14] |
Han B, Shen Z. Dual wavelet frames and Riesz bases in Sobolev spaces. Constr Approx, 2009, 29(3): 369-406
CrossRef
Google scholar
|
[15] |
Li Y, Yang S. Dual multiwavelet frames with symmetry from two-direction refinable functions. Bull Iranian Math Soc, 2011, 37(1): 199-214
|
[16] |
Lu D Y, Fan Q B. Characterizations of Lp (
|
[17] |
Lu D Y, Fan Q B. A class of tight framelet packets. Czechoslovak Math J, 2011, 61(3): 623-639
CrossRef
Google scholar
|
[18] |
Lu D Y, Li D F. A characterization of orthonormal wavelet families in Sobolev spaces. Acta Math Sci Ser B Engl Ed, 2011, 31(4): 1475-1488
|
[19] |
Ron A, Shen Z. Affine systems in L2(
|
[20] |
Ron A, Shen Z. Affine systems in L2(
|
[21] |
Ron A, Shen Z. Compactly supported tight affine spline frames in L2(
|
[22] |
Zhang Z, Saito N. Constructions of periodic wavelet frames using extension principles. Appl Comput Harmon Anal, 2008, 125: 68-186
|
/
〈 | 〉 |