Global analysis of smooth solutions to a hyperbolic-parabolic coupled system

Yinghui Zhang , Haiying Deng , Mingbao Sun

Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1437 -1460.

PDF (185KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1437 -1460. DOI: 10.1007/s11464-013-0331-9
Research Article
RESEARCH ARTICLE

Global analysis of smooth solutions to a hyperbolic-parabolic coupled system

Author information +
History +
PDF (185KB)

Abstract

We investigate a model arising from biology, which is a hyperbolic-parabolic coupled system. First, we prove the global existence and asymptotic behavior of smooth solutions to the Cauchy problem without any smallness assumption on the initial data. Second, if the H sL1-norm of initial data is sufficiently small, we also establish decay rates of the global smooth solutions. In particular, the optimal L2 decay rate of the solution and the almost optimal L2 decay rate of the first-order derivatives of the solution are obtained. These results are obtained by constructing a new nonnegative convex entropy and combining spectral analysis with energy methods.

Keywords

Global analysis / hyperbolic-parabolic system / decay rate / convex entropy

Cite this article

Download citation ▾
Yinghui Zhang, Haiying Deng, Mingbao Sun. Global analysis of smooth solutions to a hyperbolic-parabolic coupled system. Front. Math. China, 2013, 8(6): 1437-1460 DOI:10.1007/s11464-013-0331-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corrias L, Perthame B, Zaag H. A chemotaxis model motivated by angiogenesis. C R Acad Sci Paris Ser I, 2003, 336: 141-146

[2]

Corrias L, Perthame B, Zaag H. Global solutions of some chemotaxis and angiogenesis system in high space dimensions. Milan J Math, 2004, 72: 1-28

[3]

Duan R J, Lorz A, Markowich P. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations, 2010, 35(9): 1635-1673

[4]

Duan R J, Ma H F. Global existence and convergence rates for 3-D compressible Navier-Stokes equations without heat conductivity. Indiana Univ Math J, 2008, 57(5): 2299-2319

[5]

Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5): 737-758

[6]

Gueron S, Liron N. A model of herd grazing as a traveling wave: chemotaxis and stability. J Math Biol, 1989, 27: 595-608

[7]

Guo J, Xiao J X, Zhao H J, Zhu C J. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci Ser B Engl Ed, 2009, 29(3): 629-641

[8]

Hoff D, Zumbrun K. Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 604-676

[9]

Horstmann D, Stevens A. A constructive approach to travelling waves in chemotaxis. J Nonlinear Sci, 2004, 14: 1-25

[10]

Horstmanna D, Winklerb M. Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52-107

[11]

Kato S. On local and global existence theorems for a nonautonomous differential equation in a Banach space. Funkcial Ekvac, 1976, 19: 279-286

[12]

Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, 1984, Kyoto: Kyoto University

[13]

Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis. J Theor Biol, 1971, 30: 235-248

[14]

Kinami S, Mei M, Omata S. Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations. Appl Anal, 2000, 75: 317-340

[15]

Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57: 683-730

[16]

Lui R, Wang Z A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol, 2010, 61: 739-761

[17]

Marcati P, Mei M, Rubino B. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech, 2005, 7: S224-S240

[18]

Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equation. Publ RIMS Kyoto Univ, 1976, 12: 169-189

[19]

Mei M. Lq-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations. J Differential Equations, 1999, 158: 314-340

[20]

Nagai T, Ikeda T. Traveling waves in a chemotaxis model. J Math Biol, 1991, 30: 169-184

[21]

Nirenberg L. On elliptic partial differential equations. Annali della Scuola Normale Superiore diPisa-Classe di Scienze, 1959, 13(2): 115-162

[22]

Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ Math, 1978, 128: 1053-1068

[23]

Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math, 1997, 57: 1044-1081

[24]

Segal I E. Quantization and dispersion for nonlinear relativistic equations. Proc Conf on Math Theory of Elementary Particles, 1966, Cambridge: MIT Press 79 108

[25]

Smoller J. Shock Waves and Reaction-Diffusion Equations, 1983, Berlin-New York: Springer-Verlag

[26]

Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equ, 2006, 3: 561-574

[27]

Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256-271

[28]

Yang Y, Chen H, Liu W A. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J Math Anal, 2001, 33: 763-785

[29]

Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc, 2007, 135(4): 1017-1027

[30]

Zhang Y H, Tan Z, Lai B S, Sun M B. Global analysis of smooth solutions to a generalized hyperbolic-parabolic system modeling chemotaxis. Chinese Ann Math Ser A, 2012, 33: 27-38

[31]

Zhang Y H, Tan Z, Sun M B. Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system. Nonlinear Anal Real World Appl, 2013, 14: 465-482

[32]

Zhang Y H, Tan Z, Sun M B. Global smooth solutions to a coupled hyperbolic-parabolic system. Chinese Ann Math Ser A, 2013, 34: 29-46

AI Summary AI Mindmap
PDF (185KB)

1018

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/