Global analysis of smooth solutions to a hyperbolic-parabolic coupled system

Yinghui ZHANG, Haiying DENG, Mingbao SUN

PDF(185 KB)
PDF(185 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1437-1460. DOI: 10.1007/s11464-013-0331-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Global analysis of smooth solutions to a hyperbolic-parabolic coupled system

Author information +
History +

Abstract

We investigate a model arising from biology, which is a hyperbolicparabolic coupled system. First, we prove the global existence and asymptotic behavior of smooth solutions to the Cauchy problem without any smallness assumption on the initial data. Second, if the HsL1-norm of initial data is sufficiently small, we also establish decay rates of the global smooth solutions. In particular, the optimal L2 decay rate of the solution and the almost optimal L2 decay rate of the first-order derivatives of the solution are obtained. These results are obtained by constructing a new nonnegative convex entropy and combining spectral analysis with energy methods.

Keywords

Global analysis / hyperbolic-parabolic system / decay rate / convex entropy

Cite this article

Download citation ▾
Yinghui ZHANG, Haiying DENG, Mingbao SUN. Global analysis of smooth solutions to a hyperbolic-parabolic coupled system. Front Math Chin, 2013, 8(6): 1437‒1460 https://doi.org/10.1007/s11464-013-0331-9

References

[1]
Corrias L, Perthame B, Zaag H. A chemotaxis model motivated by angiogenesis. C R Acad Sci Paris Ser I, 2003, 336: 141-146
CrossRef Google scholar
[2]
Corrias L, Perthame B, Zaag H. Global solutions of some chemotaxis and angiogenesis system in high space dimensions. Milan J Math, 2004, 72: 1-28
CrossRef Google scholar
[3]
Duan R J, Lorz A, Markowich P. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations, 2010, 35(9): 1635-1673
CrossRef Google scholar
[4]
Duan R J, Ma H F. Global existence and convergence rates for 3-D compressible Navier-Stokes equations without heat conductivity. Indiana Univ Math J, 2008, 57(5): 2299-2319
CrossRef Google scholar
[5]
Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5): 737-758
CrossRef Google scholar
[6]
Gueron S, Liron N. A model of herd grazing as a traveling wave: chemotaxis and stability. J Math Biol, 1989, 27: 595-608
CrossRef Google scholar
[7]
Guo J, Xiao J X, Zhao H J, Zhu C J. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci Ser B Engl Ed, 2009, 29(3): 629-641
[8]
Hoff D, Zumbrun K.Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 604-676
CrossRef Google scholar
[9]
Horstmann D, Stevens A. A constructive approach to travelling waves in chemotaxis. J Nonlinear Sci, 2004, 14: 1-25
CrossRef Google scholar
[10]
Horstmanna D, Winklerb M. Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52-107
CrossRef Google scholar
[11]
Kato S. On local and global existence theorems for a nonautonomous differential equation in a Banach space. Funkcial Ekvac, 1976, 19: 279-286
[12]
Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis. Kyoto: Kyoto University, 1984
[13]
Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis. J Theor Biol, 1971, 30: 235-248
CrossRef Google scholar
[14]
Kinami S, Mei M, Omata S. Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations. Appl Anal, 2000, 75: 317-340
CrossRef Google scholar
[15]
Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57: 683-730
CrossRef Google scholar
[16]
Lui R, Wang Z A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol, 2010, 61: 739-761
CrossRef Google scholar
[17]
Marcati P, Mei M, Rubino B. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech, 2005, 7: S224-S240
CrossRef Google scholar
[18]
Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equation. Publ RIMS Kyoto Univ, 1976, 12: 169-189
CrossRef Google scholar
[19]
Mei M. Lq-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations. J Differential Equations, 1999, 158: 314-340
CrossRef Google scholar
[20]
Nagai T, Ikeda T. Traveling waves in a chemotaxis model. J Math Biol, 1991, 30: 169-184
CrossRef Google scholar
[21]
Nirenberg L. On elliptic partial differential equations. Annali della Scuola Normale Superiore diPisa-Classe di Scienze, 1959, 13(2): 115-162
[22]
Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ Math, 1978, 128: 1053-1068
[23]
Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math, 1997, 57: 1044-1081
CrossRef Google scholar
[24]
Segal I E. Quantization and dispersion for nonlinear relativistic equations. In: Proc Conf on Math Theory of Elementary Particles. Cambridge: MIT Press, 1966, 79-108
[25]
Smoller J. ShockWaves and Reaction-Diffusion Equations. Berlin-New York: Springer-Verlag, 1983
CrossRef Google scholar
[26]
Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equ, 2006, 3: 561-574
CrossRef Google scholar
[27]
Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256-271
CrossRef Google scholar
[28]
Yang Y, Chen H, Liu W A. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J Math Anal, 2001, 33: 763-785
CrossRef Google scholar
[29]
Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc, 2007, 135(4): 1017-1027
CrossRef Google scholar
[30]
Zhang Y H, Tan Z, Lai B S, Sun M B. Global analysis of smooth solutions to a generalized hyperbolic-parabolic system modeling chemotaxis. Chinese Ann Math Ser A, 2012, 33: 27-38 (in Chinese)
[31]
Zhang Y H, Tan Z, Sun M B. Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system. Nonlinear Anal Real World Appl, 2013, 14: 465-482
CrossRef Google scholar
[32]
Zhang Y H, Tan Z, Sun M B. Global smooth solutions to a coupled hyperbolic-parabolic system. Chinese Ann Math Ser A, 2013, 34: 29-46 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(185 KB)

Accesses

Citations

Detail

Sections
Recommended

/