Approximations and cotorsion pairs related to a tilting pair

Yihua LIAO, Jianlong CHEN

PDF(118 KB)
PDF(118 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1367-1376. DOI: 10.1007/s11464-013-0328-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximations and cotorsion pairs related to a tilting pair

Author information +
History +

Abstract

The notion of a tilting pair over artin algebras was introduced by Miyashita in 2001. It is a useful tool in the tilting theory. Approximations and cotorsion pairs related to a fixed tilting pair were discussed. A contravariantly (covariantly) finite subcategory and a cotorsion pair associated with a fixed tilting pair were given in this paper.

Keywords

Selforthogonal module / contravariantly (covariantly) finite subcategory / cotorsion pair / tilting pair

Cite this article

Download citation ▾
Yihua LIAO, Jianlong CHEN. Approximations and cotorsion pairs related to a tilting pair. Front Math Chin, 2013, 8(6): 1367‒1376 https://doi.org/10.1007/s11464-013-0328-4

References

[1]
Anderson F D, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin, New York: Springer-Verlag, 1992
CrossRef Google scholar
[2]
Araya T, Yoshino Y. Remark on a depth formula, a grade inequality, and a conjecture of Auslander. Comm Algebra, 1998, 26: 3793-3806
CrossRef Google scholar
[3]
Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math, 1991, 86: 111-152
CrossRef Google scholar
[4]
Auslander M, Smalø S O. Preprojective modules over artin algebras. J Algebra, 1980, 66: 61-122
CrossRef Google scholar
[5]
Avramov L L, Buchweitz R O. Support varieties and cohomology over complete intersections. Invent Math, 2000, 142: 285-318
CrossRef Google scholar
[6]
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004, 273: 359-372
CrossRef Google scholar
[7]
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin, New York: Walter de Gruyter, 2000
CrossRef Google scholar
[8]
Enochs E E, Oyonarte L. Covers, Envolopes, and Cotorsion Theories. New York: Nova Science Publishers, Inc, 2002
[9]
Garcia R J R. Covers and Envelopes in the Category of Complexes of Modules. London: Chapman & Hall/CRC, 1999
[10]
Göbel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin, New York: Walter de Gruyter, 2006
CrossRef Google scholar
[11]
Miyashita Y. Tilting modules associated with a series of idempotent ideals. J Algebra, 2001, 238: 485-501
CrossRef Google scholar
[12]
Reiten I. Tilting theory and homologically finite subcategories with applications to quasihereditary algebras. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332. Cambridge: Cambridge Univ Press, 2007, 179-214
CrossRef Google scholar
[13]
Sega L M. Vanishing of cohomology over Gorenstein rings of small codimension. Proc Amer Math Soc, 2002, 131: 2313-2323
CrossRef Google scholar
[14]
Trlifaj J. Infinite dimensional tilting modules and cotorsion pairs. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332. Cambridge: Cambridge Univ Press, 2007: 279-322
CrossRef Google scholar
[15]
Wei J Q, Xi C C. A characterization of the tilting pair. J Algebra, 2007, 317(1): 376-391
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(118 KB)

Accesses

Citations

Detail

Sections
Recommended

/