![](/develop/static/imgs/pdf.png)
Approximations and cotorsion pairs related to a tilting pair
Yihua LIAO, Jianlong CHEN
Approximations and cotorsion pairs related to a tilting pair
The notion of a tilting pair over artin algebras was introduced by Miyashita in 2001. It is a useful tool in the tilting theory. Approximations and cotorsion pairs related to a fixed tilting pair were discussed. A contravariantly (covariantly) finite subcategory and a cotorsion pair associated with a fixed tilting pair were given in this paper.
Selforthogonal module / contravariantly (covariantly) finite subcategory / cotorsion pair / tilting pair
[1] |
Anderson F D, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin, New York: Springer-Verlag, 1992
CrossRef
Google scholar
|
[2] |
Araya T, Yoshino Y. Remark on a depth formula, a grade inequality, and a conjecture of Auslander. Comm Algebra, 1998, 26: 3793-3806
CrossRef
Google scholar
|
[3] |
Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math, 1991, 86: 111-152
CrossRef
Google scholar
|
[4] |
Auslander M, Smalø S O. Preprojective modules over artin algebras. J Algebra, 1980, 66: 61-122
CrossRef
Google scholar
|
[5] |
Avramov L L, Buchweitz R O. Support varieties and cohomology over complete intersections. Invent Math, 2000, 142: 285-318
CrossRef
Google scholar
|
[6] |
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004, 273: 359-372
CrossRef
Google scholar
|
[7] |
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin, New York: Walter de Gruyter, 2000
CrossRef
Google scholar
|
[8] |
Enochs E E, Oyonarte L. Covers, Envolopes, and Cotorsion Theories. New York: Nova Science Publishers, Inc, 2002
|
[9] |
Garcia R J R. Covers and Envelopes in the Category of Complexes of Modules. London: Chapman & Hall/CRC, 1999
|
[10] |
Göbel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin, New York: Walter de Gruyter, 2006
CrossRef
Google scholar
|
[11] |
Miyashita Y. Tilting modules associated with a series of idempotent ideals. J Algebra, 2001, 238: 485-501
CrossRef
Google scholar
|
[12] |
Reiten I. Tilting theory and homologically finite subcategories with applications to quasihereditary algebras. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332. Cambridge: Cambridge Univ Press, 2007, 179-214
CrossRef
Google scholar
|
[13] |
Sega L M. Vanishing of cohomology over Gorenstein rings of small codimension. Proc Amer Math Soc, 2002, 131: 2313-2323
CrossRef
Google scholar
|
[14] |
Trlifaj J. Infinite dimensional tilting modules and cotorsion pairs. In: Handbook of Tilting Theory. London Math Soc Lect Note Ser, 332. Cambridge: Cambridge Univ Press, 2007: 279-322
CrossRef
Google scholar
|
[15] |
Wei J Q, Xi C C. A characterization of the tilting pair. J Algebra, 2007, 317(1): 376-391
CrossRef
Google scholar
|
/
〈 |
|
〉 |