Conjectures and problems on Bochner-Riesz means

Shanzhen Lu

Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1237 -1251.

PDF (135KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1237 -1251. DOI: 10.1007/s11464-013-0323-9
Survey Article
SURVEY ARTICLE

Conjectures and problems on Bochner-Riesz means

Author information +
History +
PDF (135KB)

Abstract

The aim of this paper is to state some conjectures and problems on Bochner-Riesz means in multiple Fourier series and integrals. The progress on these conjectures and problems are also mentioned.

Keywords

Bochner-Riesz means / Fourier series / Fourier integral / norm convergence / almost everywhere convergence

Cite this article

Download citation ▾
Shanzhen Lu. Conjectures and problems on Bochner-Riesz means. Front. Math. China, 2013, 8(6): 1237-1251 DOI:10.1007/s11464-013-0323-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acrarez J, Bagby R J, Kurtz D S, Perez C. Weighted estimates for commutators of linear operators. Studia Math, 1993, 104(2): 195-209

[2]

Bochner S. Summation of multiple Fourier series by spherical means. Trans Amer Math Soc, 1936, 40: 175-207

[3]

Bochner S, Chandrasekharan K. On the localization property for multiple Fourier series. Ann Math, 1948, 49(4): 966-978

[4]

Bourgain J. Lp estimates for oscillatory integrals in several variables. Geom Funct Anal, 1991, 1: 321-374

[5]

Bourgain J, Guth L. Bounds on oscillatory integral operators based on multilinear estimates. Geom Funct Anal, 2011, 21: 1239-1295

[6]

Carbery A. The boundedness of the maximal Bochner-Riesz operator on L4(ℝ2). Duke Math J, 1983, 50: 409-416

[7]

Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summmability of Fourier integrals. J Lond Math Soc, 1988, 38: 513-524

[8]

Carbery A, Soria F. Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces and a Localisation principle. Rev Mat Iberoamericana, 1988, 4: 319-337

[9]

Carleson L. On convergence and growth of partial sums of Fourier series. Acta Math, 1966, 116: 135-157

[10]

Carleson L, Sjolin P. Oscillatory integrals and a multiplier problem for the disc. Studia Math, 1972, 44(3): 287-299

[11]

Codoba A, Lopez-Melero B. Spherical summation: A problem of E. M. Stein. Ann Inst Fourier, 1982, 31: 117-152

[12]

Fefferman C. On the divergence of multiple Fourier series. Bull Amer Math Soc, 1971, 77: 191-195

[13]

Fefferman C. The multiplier problem for the ball. Ann Math, 1971, 94: 330-336

[14]

Fefferman R. A theory of entropy in Fourier analysis. Adv Math, 1987, 30: 171-201

[15]

Herz C. On the mean inversion of Fourier and Hankel transforms. Proc Nat Acad Sci USA, 1954, 40: 996-999

[16]

Hormander L. Oscillatory integrals and multipliers on FLp. Ark Mat, 1973, II: 1-11

[17]

Hu G E, Lu S Z. The commutator of the Bochner-Riesz operator. Tohoku Math J, 1996, 48: 259-266

[18]

Hu G E, Lu S Z. A weighted L2 estimate for the commutator of the Bochner-Riesz operator. Proc Amer Math Soc, 1997, 125: 2867-2873

[19]

Hunt R. Haimo D T. On the convergence of Fourier series. Orthogonal Expansions and Their Continuous Analogues (Edwardsville, Ill, 1967), 1968, Carbondale: Southern Illinois Univ Press 235 255

[20]

Igari S. Decomposition theorem and lacunary convergence of Riesz-Bochner means of Fourier transforms of two variables. Tohoku Math J, 1981, 33(3): 413-419

[21]

Kolmogorov A. Une Serie de Fourier-Lebesgue divergente presque partout. Found Math, 1923, 4: 324-328

[22]

Kolmogorov A. Une serie de Fourier-Lebesgue divergente partout. Comptes Rendus Hebdomadaries, Seances de l’ Academie des Sciences, Paris, 1926, 183: 1327-1328

[23]

Lee S. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operators. Duke Math J, 2004, 122: 205-232

[24]

Long R L. The spaces generated by blocks. Scientia Sinica, Ser A, 1984, 27(1): 16-26

[25]

Lu SZ. Strong summability of Bochner-Riesz spherical means. Scientia Sinica, Ser A, 1985, 28(1): 1-13

[26]

Lu S Z, Taibleson M H, Weiss G. On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series. Lecture Notes in Math, 1982, 908: 311-318

[27]

Lu S Z, Taibleson M H, Weiss G. Spaces Generated by Blocks, 1989, Beijing: Beijing Normal University Press

[28]

Lu S Z, Wang S M. Spaces generated by smooth blocks. Constr Approx, 1992, 8(3): 331-341

[29]

Lu S Z, Xia X. A note on commutators of Bochner-Riesz operator. Front Math China, 2007, 2: 439-446

[30]

Ma B L, Liu H P, Lu S Z. Norm inequality with power weights for a class of maximal spherical summation operators. J Beijing Normal University (Natural Science), 1989, 2: 1-4

[31]

Meyer Y, Taibleson M H, Weiss G. Some functional analytic properties of the space Bq generated by blocks. Indian Univ Math, 1985, 34: 493-515

[32]

Riesz M. Sur les fonctions conjuguees. Math Z, 1927, 27: 218-244

[33]

Sato S. Entropy and almost everywhere convergence of Fourier series. Tohoku Math J, 1981, 33(4): 593-597

[34]

Stein E M. Localization and summability of multiple Fourier series. Acta Math, 1958, 100: 93-147

[35]

Stein E M. On certain exponential sums arising in multiple Fourier series. Ann Math, 1961, 73: 87-109

[36]

Stein E M. An H1 function with non-summable Fourier expansion. Lecture Notes in Math, 1983, 992: 193-200

[37]

Tao T. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math J, 1999, 96: 363-376

[38]

Tao T. On the Maximal Bochner-Riesz conjecture in the plane for p < 2. Trans Amer Math Soc, 2002, 354(5): 1947-1959

[39]

Tomas P. Restriction theorems for the Fourier transform. In: Harmonic Analysis in Euclidean space. Proc Sympos Pure Math, Vol 35, Part I, 1979, Providence: Amer Math Soc 111 114

[40]

Welland G V. Norm convergence of Riesz-Bochner means for radial function. Can J Math, 1975, 27(1): 176-185

[41]

Zygmund A. Trigonomeric Series, 1959, Cambridge: Cambridge Univ Press

AI Summary AI Mindmap
PDF (135KB)

1505

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/