Conjectures and problems on Bochner-Riesz means

Shanzhen LU

PDF(135 KB)
PDF(135 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1237-1251. DOI: 10.1007/s11464-013-0323-9
SURVEY ARTICLE
SURVEY ARTICLE

Conjectures and problems on Bochner-Riesz means

Author information +
History +

Abstract

The aim of this paper is to state some conjectures and problems on Bochner-Riesz means in multiple Fourier series and integrals. The progress on these conjectures and problems are also mentioned.

Keywords

Bochner-Riesz means / Fourier series / Fourier integral / norm convergence / almost everywhere convergence

Cite this article

Download citation ▾
Shanzhen LU. Conjectures and problems on Bochner-Riesz means. Front Math Chin, 2013, 8(6): 1237‒1251 https://doi.org/10.1007/s11464-013-0323-9

References

[1]
Acrarez J, Bagby R J, Kurtz D S, Perez C. Weighted estimates for commutators of linear operators. Studia Math, 1993, 104(2): 195-209
[2]
Bochner S. Summation of multiple Fourier series by spherical means. Trans Amer Math Soc, 1936, 40: 175-207
CrossRef Google scholar
[3]
Bochner S, Chandrasekharan K. On the localization property for multiple Fourier series. Ann Math, 1948, 49(4): 966-978
CrossRef Google scholar
[4]
Bourgain J. Lp estimates for oscillatory integrals in several variables. Geom Funct Anal, 1991, 1: 321-374
CrossRef Google scholar
[5]
Bourgain J, Guth L. Bounds on oscillatory integral operators based on multilinear estimates. Geom Funct Anal, 2011, 21: 1239-1295
CrossRef Google scholar
[6]
Carbery A. The boundedness of the maximal Bochner-Riesz operator on L4(ℝ2). Duke Math J, 1983, 50: 409-416
CrossRef Google scholar
[7]
Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summmability of Fourier integrals. J Lond Math Soc, 1988, 38: 513-524
[8]
Carbery A, Soria F. Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces and a Localisation principle. Rev Mat Iberoamericana, 1988, 4: 319-337
CrossRef Google scholar
[9]
Carleson L. On convergence and growth of partial sums of Fourier series. Acta Math, 1966, 116: 135-157
CrossRef Google scholar
[10]
Carleson L, Sjolin P. Oscillatory integrals and a multiplier problem for the disc. Studia Math, 1972, 44(3): 287-299
[11]
Codoba A, Lopez-Melero B. Spherical summation: A problem of E. M. Stein. Ann Inst Fourier, 1982, 31: 117-152
[12]
Fefferman C. On the divergence of multiple Fourier series. Bull Amer Math Soc, 1971, 77: 191-195
CrossRef Google scholar
[13]
Fefferman C. The multiplier problem for the ball. Ann Math. 1971, 94: 330-336
CrossRef Google scholar
[14]
Fefferman R. A theory of entropy in Fourier analysis. Adv Math, 1987, 30: 171-201
CrossRef Google scholar
[15]
Herz C. On the mean inversion of Fourier and Hankel transforms. Proc Nat Acad Sci USA, 1954, 40: 996-999
CrossRef Google scholar
[16]
Hormander L. Oscillatory integrals and multipliers on FLp.Ark Mat, 1973, II: 1-11
CrossRef Google scholar
[17]
Hu G E, Lu S Z. The commutator of the Bochner-Riesz operator. Tohoku Math J, 1996, 48: 259-266
CrossRef Google scholar
[18]
Hu G E, Lu S Z. A weighted L2 estimate for the commutator of the Bochner-Riesz operator. Proc Amer Math Soc, 1997, 125: 2867-2873
CrossRef Google scholar
[19]
Hunt R. On the convergence of Fourier series. In: Haimo D T, ed. Orthogonal Expansions and Their Continuous Analogues (Edwardsville, Ill, 1967). Carbondale: Southern Illinois Univ Press, 1968, 235-255
[20]
Igari S. Decomposition theorem and lacunary convergence of Riesz-Bochner means of Fourier transforms of two variables. Tohoku Math J, 1981, 33(3): 413-419
CrossRef Google scholar
[21]
Kolmogorov A. Une Serie de Fourier-Lebesgue divergente presque partout. Found Math, 1923, 4: 324-328
[22]
Kolmogorov A. Une serie de Fourier-Lebesgue divergente partout. Comptes Rendus Hebdomadaries, Seances de l’ Academie des Sciences, Paris, 1926, 183: 1327-1328
[23]
Lee S. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operators. Duke Math J, 2004, 122: 205-232
CrossRef Google scholar
[24]
Long R L. The spaces generated by blocks. Scientia Sinica, Ser A, 1984, 27(1): 16-26
[25]
Lu S.Z. Strong summability of Bochner-Riesz spherical means. Scientia Sinica, Ser A, 1985, 28(1): 1-13
[26]
Lu S Z, Taibleson M H, Weiss G. On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series. Lecture Notes in Math, 1982, 908: 311-318
CrossRef Google scholar
[27]
Lu S Z, Taibleson M H, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal University Press, 1989
[28]
Lu S Z, Wang S M. Spaces generated by smooth blocks. Constr Approx, 1992, 8(3): 331-341
CrossRef Google scholar
[29]
Lu S Z, Xia X. A note on commutators of Bochner-Riesz operator. Front Math China, 2007, 2: 439-446
CrossRef Google scholar
[30]
Ma B L, Liu H P, Lu S Z. Norm inequality with power weights for a class of maximal spherical summation operators. J Beijing Normal University (Natural Science), 1989, 2: 1-4(in Chinese)
[31]
Meyer Y, Taibleson M H, Weiss G. Some functional analytic properties of the space Bq generated by blocks. Indian Univ Math, 1985, 34: 493-515
CrossRef Google scholar
[32]
Riesz M. Sur les fonctions conjuguees. Math Z, 1927, 27: 218-244
CrossRef Google scholar
[33]
Sato S. Entropy and almost everywhere convergence of Fourier series. Tohoku Math J, 1981, 33(4): 593-597
CrossRef Google scholar
[34]
Stein E M. Localization and summability of multiple Fourier series. Acta Math, 1958, 100: 93-147
CrossRef Google scholar
[35]
Stein E M. On certain exponential sums arising in multiple Fourier series. Ann Math, 1961, 73: 87-109
CrossRef Google scholar
[36]
Stein E M. An H1 function with non-summable Fourier expansion. Lecture Notes in Math, 1983, 992: 193-200
CrossRef Google scholar
[37]
Tao T. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math J, 1999, 96: 363-376
CrossRef Google scholar
[38]
Tao T. On the Maximal Bochner-Riesz conjecture in the plane for p<2. Trans Amer Math Soc, 2002, 354(5): 1947-1959
CrossRef Google scholar
[39]
Tomas P. Restriction theorems for the Fourier transform. In: Harmonic Analysis in Euclidean space, Proc Sympos Pure Math, <BibVersion>Vol 35</BibVersion>, Part I. Providence: Amer Math Soc, 1979, 111-114
CrossRef Google scholar
[40]
Welland G V. Norm convergence of Riesz-Bochner means for radial function. Can J Math, 1975, 27(1): 176-185
CrossRef Google scholar
[41]
Zygmund A. Trigonomeric Series. Cambridge: Cambridge Univ Press, 1959

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/