Conjectures and problems on Bochner-Riesz means
Shanzhen LU
Conjectures and problems on Bochner-Riesz means
The aim of this paper is to state some conjectures and problems on Bochner-Riesz means in multiple Fourier series and integrals. The progress on these conjectures and problems are also mentioned.
Bochner-Riesz means / Fourier series / Fourier integral / norm convergence / almost everywhere convergence
[1] |
Acrarez J, Bagby R J, Kurtz D S, Perez C. Weighted estimates for commutators of linear operators. Studia Math, 1993, 104(2): 195-209
|
[2] |
Bochner S. Summation of multiple Fourier series by spherical means. Trans Amer Math Soc, 1936, 40: 175-207
CrossRef
Google scholar
|
[3] |
Bochner S, Chandrasekharan K. On the localization property for multiple Fourier series. Ann Math, 1948, 49(4): 966-978
CrossRef
Google scholar
|
[4] |
Bourgain J. Lp estimates for oscillatory integrals in several variables. Geom Funct Anal, 1991, 1: 321-374
CrossRef
Google scholar
|
[5] |
Bourgain J, Guth L. Bounds on oscillatory integral operators based on multilinear estimates. Geom Funct Anal, 2011, 21: 1239-1295
CrossRef
Google scholar
|
[6] |
Carbery A. The boundedness of the maximal Bochner-Riesz operator on L4(
CrossRef
Google scholar
|
[7] |
Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summmability of Fourier integrals. J Lond Math Soc, 1988, 38: 513-524
|
[8] |
Carbery A, Soria F. Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces and a Localisation principle. Rev Mat Iberoamericana, 1988, 4: 319-337
CrossRef
Google scholar
|
[9] |
Carleson L. On convergence and growth of partial sums of Fourier series. Acta Math, 1966, 116: 135-157
CrossRef
Google scholar
|
[10] |
Carleson L, Sjolin P. Oscillatory integrals and a multiplier problem for the disc. Studia Math, 1972, 44(3): 287-299
|
[11] |
Codoba A, Lopez-Melero B. Spherical summation: A problem of E. M. Stein. Ann Inst Fourier, 1982, 31: 117-152
|
[12] |
Fefferman C. On the divergence of multiple Fourier series. Bull Amer Math Soc, 1971, 77: 191-195
CrossRef
Google scholar
|
[13] |
Fefferman C. The multiplier problem for the ball. Ann Math. 1971, 94: 330-336
CrossRef
Google scholar
|
[14] |
Fefferman R. A theory of entropy in Fourier analysis. Adv Math, 1987, 30: 171-201
CrossRef
Google scholar
|
[15] |
Herz C. On the mean inversion of Fourier and Hankel transforms. Proc Nat Acad Sci USA, 1954, 40: 996-999
CrossRef
Google scholar
|
[16] |
Hormander L. Oscillatory integrals and multipliers on FLp.Ark Mat, 1973, II: 1-11
CrossRef
Google scholar
|
[17] |
Hu G E, Lu S Z. The commutator of the Bochner-Riesz operator. Tohoku Math J, 1996, 48: 259-266
CrossRef
Google scholar
|
[18] |
Hu G E, Lu S Z. A weighted L2 estimate for the commutator of the Bochner-Riesz operator. Proc Amer Math Soc, 1997, 125: 2867-2873
CrossRef
Google scholar
|
[19] |
Hunt R. On the convergence of Fourier series. In: Haimo D T, ed. Orthogonal Expansions and Their Continuous Analogues (Edwardsville, Ill, 1967). Carbondale: Southern Illinois Univ Press, 1968, 235-255
|
[20] |
Igari S. Decomposition theorem and lacunary convergence of Riesz-Bochner means of Fourier transforms of two variables. Tohoku Math J, 1981, 33(3): 413-419
CrossRef
Google scholar
|
[21] |
Kolmogorov A. Une Serie de Fourier-Lebesgue divergente presque partout. Found Math, 1923, 4: 324-328
|
[22] |
Kolmogorov A. Une serie de Fourier-Lebesgue divergente partout. Comptes Rendus Hebdomadaries, Seances de l’ Academie des Sciences, Paris, 1926, 183: 1327-1328
|
[23] |
Lee S. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operators. Duke Math J, 2004, 122: 205-232
CrossRef
Google scholar
|
[24] |
Long R L. The spaces generated by blocks. Scientia Sinica, Ser A, 1984, 27(1): 16-26
|
[25] |
Lu S.Z. Strong summability of Bochner-Riesz spherical means. Scientia Sinica, Ser A, 1985, 28(1): 1-13
|
[26] |
Lu S Z, Taibleson M H, Weiss G. On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series. Lecture Notes in Math, 1982, 908: 311-318
CrossRef
Google scholar
|
[27] |
Lu S Z, Taibleson M H, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal University Press, 1989
|
[28] |
Lu S Z, Wang S M. Spaces generated by smooth blocks. Constr Approx, 1992, 8(3): 331-341
CrossRef
Google scholar
|
[29] |
Lu S Z, Xia X. A note on commutators of Bochner-Riesz operator. Front Math China, 2007, 2: 439-446
CrossRef
Google scholar
|
[30] |
Ma B L, Liu H P, Lu S Z. Norm inequality with power weights for a class of maximal spherical summation operators. J Beijing Normal University (Natural Science), 1989, 2: 1-4(in Chinese)
|
[31] |
Meyer Y, Taibleson M H, Weiss G. Some functional analytic properties of the space Bq generated by blocks. Indian Univ Math, 1985, 34: 493-515
CrossRef
Google scholar
|
[32] |
Riesz M. Sur les fonctions conjuguees. Math Z, 1927, 27: 218-244
CrossRef
Google scholar
|
[33] |
Sato S. Entropy and almost everywhere convergence of Fourier series. Tohoku Math J, 1981, 33(4): 593-597
CrossRef
Google scholar
|
[34] |
Stein E M. Localization and summability of multiple Fourier series. Acta Math, 1958, 100: 93-147
CrossRef
Google scholar
|
[35] |
Stein E M. On certain exponential sums arising in multiple Fourier series. Ann Math, 1961, 73: 87-109
CrossRef
Google scholar
|
[36] |
Stein E M. An H1 function with non-summable Fourier expansion. Lecture Notes in Math, 1983, 992: 193-200
CrossRef
Google scholar
|
[37] |
Tao T. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math J, 1999, 96: 363-376
CrossRef
Google scholar
|
[38] |
Tao T. On the Maximal Bochner-Riesz conjecture in the plane for p<2. Trans Amer Math Soc, 2002, 354(5): 1947-1959
CrossRef
Google scholar
|
[39] |
Tomas P. Restriction theorems for the Fourier transform. In: Harmonic Analysis in Euclidean space, Proc Sympos Pure Math, <BibVersion>Vol 35</BibVersion>, Part I. Providence: Amer Math Soc, 1979, 111-114
CrossRef
Google scholar
|
[40] |
Welland G V. Norm convergence of Riesz-Bochner means for radial function. Can J Math, 1975, 27(1): 176-185
CrossRef
Google scholar
|
[41] |
Zygmund A. Trigonomeric Series. Cambridge: Cambridge Univ Press, 1959
|
/
〈 | 〉 |